综合智慧能源 ›› 2025, Vol. 47 ›› Issue (6): 11-19.doi: 10.3969/j.issn.2097-0706.2025.06.002

• 综合能源系统优化控制 • 上一篇    下一篇

结合变分模态分解与三重卷积神经网络的光伏出力预测

殷林飞a(), 张依玲b()   

  1. a.广西大学 广西电力系统最优化与节能技术重点实验室,南宁 530004
    b.数学与信息科学学院,南宁 530004
  • 收稿日期:2024-06-03 修回日期:2024-08-02 出版日期:2025-06-25
  • 作者简介:殷林飞(1990),男,副教授,博士,从事电力系统运行与分析、人工智能在电力系统中的应用等方面的研究,yinlinfei@gxu.edu.cn
    张依玲(2004),女,从事数学与信息科学等方面的研究,zhangyiling64@163.com
  • 基金资助:
    国家自然科学基金项目(52107081)

Photovoltaic power output prediction based on variational mode decomposition and triple convolutional neural networks

YIN Linfeia(), ZHANG Yilingb()   

  1. a. Guangxi Key Laboratory of Power System Optimization and Energy Technology,Nanning 530004,China
    b. School of Mathematics and Information Science,Guangxi University,Nanning 530004,China
  • Received:2024-06-03 Revised:2024-08-02 Published:2025-06-25
  • Supported by:
    National Nature Science Foundation of China(52107081)

摘要:

针对光伏出力预测准确率较低的问题,提出一种结合变分模态分解的三重卷积神经网络(VMD-TCNNs)预测模型。采用变分模态分解(VMD)分解每一天的气象数据,实现固有模态函数的有效分离,将由固有模态函数拼接、重构和压缩而成的4维图片输入到三重卷积神经网络(TCNNs)中进行训练和预测,再将TCNNs获得的初始预测结果经过全连接层、dropout层和回归输出层进行预测,以获得最终结果。将VMD-TCNNs用于预测巴西纳塔尔市提前一天每小时的光伏出力功率,用实际光伏出力和气象数据进行仿真试验并与26种算法作对比。试验结果表明,VMD-TCNNs模型的平均绝对误差、均方误差和均方根误差分别为49.05 W,7 403.94 W2和86.05 W。经对比,VMD-TCNNs的各评价指标均低于其他对比模型,且MAE数值比其他26种对比模型至少小33.074%,验证了所提模型的有效性。

关键词: 三重卷积神经网络, 变分模态分解, 光伏出力预测, 每小时预测

Abstract:

To address the issue of low accuracy in photovoltaic power output prediction,this paper proposes a prediction model combining variational mode decomposition with triple convolutional neural networks(VMD-TCNNs). The variational mode decomposition(VMD) was adopted to decompose daily meteorological data,effectively separating intrinsic mode functions. The functions were then stitched,reconstructed and compressed into four-dimensional images,which were input into triple convolutional neural networks(TCNNs) for training and prediction. The initial prediction results from the TCNNs were further processed through fully connected layer,the dropout layer,and the regression output layer to obtain the final results. The VMD-TCNNs model was applied to predict the hourly photovoltaic power output one day in advance in Natal,Brazil. Simulations using actual photovoltaic output and meteorological data were conducted,and the results were compared with 26 other algorithms. The experimental results showed that the mean absolute error (MAE),mean square error and root mean square error of the VMD-TCNNs model were 49.05 W,7403.94 W2 and 86.05 W,respectively. Compared with other models,the evaluation indexes of the VMD-TCNNs model were lower,and its MAE value was at least 33.074% smaller than that of the other 26 models,confirming the validity of the proposed model.

Key words: triple convolutional neural network, variational mode decomposition, photovoltaic power output prediction, hourly prediction

中图分类号: