综合智慧能源 ›› 2025, Vol. 47 ›› Issue (6): 20-29.doi: 10.3969/j.issn.2097-0706.2025.06.003

• 综合能源系统优化控制 • 上一篇    下一篇

基于VMD-BP-BiLSTM的短期风电功率预测

程先龙(), 张杰, 李思莹, 杨翼霞, 杨翠飞   

  1. 云南电网有限责任公司 红河供电局,云南 红河 661100
  • 收稿日期:2024-10-12 修回日期:2024-10-28 出版日期:2025-06-25
  • 作者简介:程先龙(1982),男,工程师,从事电网调度运行方面的研究,2522763567@qq.com
  • 基金资助:
    云南电网科技项目(YNKJXM2022201)

Short-term wind power prediction based on VMD-BP-BiLSTM

CHENG Xianlong(), ZHANG Jie, LI Siying, YANG Yixia, YANG Cuifei   

  1. Honghe Power Supply Bureau of Yunnan Power Grid Company Limited,Honghe 661100,China
  • Received:2024-10-12 Revised:2024-10-28 Published:2025-06-25
  • Supported by:
    Yunnan Power Grid Science and Technology Project(YNKJXM2022201)

摘要:

随着绿色能源理念的不断发展,风力发电因其可再生和无污染的特性而成为研究的重点。然而,风力发电的输出存在显著的波动性和随机性,对电网的功率调度构成了挑战。为准确预测风电功率,实现电网的供需平衡和稳定运行,提出了一种变分模态分解-反向传播-双向长短期记忆网络(VMD-BP-BiLSTM)组合模型作为预测工具。该模型首先利用相邻数据的平均值对原始数据进行异常值检测和替换,然后对数据进行归一化,以减少不同数据之间的差异和干扰。预处理完成后,采用VMD将历史风电功率分解为多个具有不同特征的模态分量。然后,将这些模态分量和对应气象数据等输入到BP神经网络和BiLSTM的组合模型中,并对各个分量进行独立的预测。对西北地区风电站进行风电功率预测仿真试验,与传统的BP神经网络、BiLSTM、极限学习机(ELM)以及卷积神经网络-长短期记忆(CNN-LSTM)等模型相比,VMD-BP-BiLSTM模型展现出更精确的预测能力。VMD-BP-BiLSTM组合模型为风电功率的预测提供了新方法。

关键词: 风电功率预测, 变分模态分解, BP神经网络, 双向长短期记忆网络, 组合预测模型

Abstract:

With the continuous development of the green energy concept,wind power generation has become a research focus due to its renewable and non-polluting characteristics. However,the output of wind turbines exhibits significant volatility and randomness,posing challenges for power dispatch in the grid. To accurately predict wind power and achieve supply-demand balance and stable operation of the power grid,an innovative variational mode decomposition-back-propagation-bidirectional long short-term memory(VMD-BP-BiLSTM) combined model was proposed as a prediction tool. This model used the average values of adjacent data to detect and replaced outliers in the raw data,followed by data normalization to reduce differences and interference between different data sets. After data preprocessing,VMD was applied to decompose historical wind power generation data into multiple modal components with different characteristics. These modal components,along with corresponding meteorological data,were then input into a combined model of BP neural network and BiLSTM model to independently predict each component. Simulation tests of wind power prediction for wind farms in the northwest region showed that,compared to traditional models such as BP neural networks,BiLSTM,extreme learning machine (ELM),and convolutional neural network-long short-term memory(CNN-LSTM) models,the VMD-BP-BiLSTM model demonstrated more accurate prediction ability. The VMD-BP-BiLSTM combined model provides a new approach for wind power prediction.

Key words: wind power prediction, variational mode decomposition, BP neural network, BiLSTM network, combined prediction model

中图分类号: