综合智慧能源 ›› 2025, Vol. 47 ›› Issue (6): 85-93.doi: 10.3969/j.issn.2097-0706.2025.06.009
• 源网协调 • 上一篇
收稿日期:
2025-02-25
修回日期:
2025-04-07
出版日期:
2025-06-25
通讯作者:
黄志甲*(1963),男,教授,博士生导师,博士,从事绿色建筑、可再生能源等方面的研究,jzjnyjs@163.com。作者简介:
班逢春(1999),女,硕士生,从事综合能源系统方面的研究,2245007623@qq.com。
基金资助:
BAN Fengchun1(), CHEN Xiaofeng2, HUANG Zhijia1,*(
)
Received:
2025-02-25
Revised:
2025-04-07
Published:
2025-06-25
Supported by:
摘要:
住宅屋顶作为一种闲置且几乎不受阴影遮挡的空间,为光伏系统的部署提供了理想条件。然而,光伏发电的波动性和间歇性,以及光伏发电与住宅用电之间在不同时间段的供需不匹配问题,使得住宅能源管理系统在实现供需平衡方面面临显著挑战。光伏发电预测作为能源系统优化调度和提升系统效率的重要环节,对于有效应对这些挑战至关重要。为此,提出了一种基于粒子群优化(PSO)算法与反向传播(BP)神经网络相结合的改进预测模型。该模型通过PSO优化BP神经网络参数,显著提高了光伏发电功率预测的精度和稳定性。试验结果表明,改进模型在四季的预测精度均优于传统BP神经网络,RMSE平均降低42.31%,R²平均提高2.22%,全年平均预测精度达到90.00%以上,其中冬季预测精度最高,为99.46%,为光伏住宅建筑光伏发电系统的优化调度提供了可靠的预测数据,具有重要的实际应用价值。
中图分类号:
班逢春, 陈萧凤, 黄志甲. 基于PSO-BP神经网络的住宅光伏发电预测模型[J]. 综合智慧能源, 2025, 47(6): 85-93.
BAN Fengchun, CHEN Xiaofeng, HUANG Zhijia. Residential photovoltaic power generation prediction model based on PSO-BP neural network[J]. Integrated Intelligent Energy, 2025, 47(6): 85-93.
[1] | 劳凯月, 祁明亮, 高敏刚, 等. 碳中和目标下我国光伏发电发展路径规划研究[J]. 科技促进发展, 2023, 19(4): 219-227. |
LAO Kaiyue, QI Mingliang, GAO Mingang, et al. Study on China's optimal solar photovoltaic power development path to achieve carbon neutrality[J]. Science and Technology for Development, 2023, 19(4): 219-227. | |
[2] | 张春明, 晋家润, 武春旭, 等. 能源转型视角下垭口村“零碳乡村” 可行性研究[J]. 建筑科学, 2025, 41(2): 34-45. |
ZHANG Chunming, JIN Jiarun, WU Chunxu, et al. Feasibility study on the "zero-carbon village" of yakou village from the perspective of energy transition[J]. Building Science, 2025, 41(2): 34-45. | |
[3] | WEN Q M, LIU G, RAO Z H, et al. Applications, evaluations and supportive strategies of distributed energy systems: A review[J]. Energy and Buildings, 2020, 225: 110314. |
[4] | NADEEM TBIN, SIDDIQUI M, KHALID M, et al. Distributed energy systems: A review of classification, technologies, applications, and policies[J]. Energy Strategy Reviews, 2023, 48: 101096. |
[5] | 曾鸣, 许文秀, 魏阳, 等. 基于可再生能源分布式发电投资的模糊综合评价研究[J]. 华东电力, 2011, 39(2): 180-183. |
ZENG Ming, XU Wenxiu, WEI Yang, et al. Research on fuzzy synthetic evaluation of renewable distributed energy generation investment[J]. East China Electric Power, 2011, 39(2): 180-183. | |
[6] | 李莎, 鲍丹阳. 负载自适应扰动孤岛检测法[J]. 电力电子技术, 2025, 59(1): 86-89. |
LI Sha, BAO Danyang. Load-adaptive disturbance islanding detection method[J]. Power Electronics, 2025, 59(1): 86-89. | |
[7] | SOMMERFELD J, BUYS L, VINE D. Residential consumers' experiences in the adoption and use of solar PV[J]. Energy Policy, 2017, 105: 10-16. |
[8] | CHI F A, WU Y. Residential buildings integrated with SPVP and RCL towards energy saving[J]. Renewable and Sustainable Energy Reviews, 2025, 212: 115370. |
[9] | 黄志甲, 寇遵丽, 郝红婷. 民居能源中心能量匹配及其鲁棒性[J]. 太阳能学报, 2021, 42(11): 495-500. |
HUANG Zhijia, KOU Zunli, HAO Hongting. Energy matching and robustness of home energy hub[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 495-500. | |
[10] | NELEGA R, GREU D I, JECAN E, et al. Prediction of power generation of a photovoltaic power plant based on neural networks[J]. IEEE Access, 2023, 11: 20713-20724. |
[11] | TONG J L, XIE L P, FANG S X, et al. Hourly solar irradiance forecasting based on encoder-decoder model using series decomposition and dynamic error compensation[J]. Energy Conversion and Management, 2022, 270: 116049. |
[12] | 张永宁, 任晓颖, 张飞, 等. 基于深度学习的光伏功率预测技术[J/OL]. 综合智慧能源, 1-8 (2024-04-01)[2025-02-12]. https://kns.cnki.net/kcms/detail/41.1461.TK.20240328.2244.002.html. |
ZHANG Yongning, REN Xiaoying, ZHANG Fei, et al. Deep learning based Photovoltaic power prediction technology[J/OL]. Integrated Intelligent Energy, 1-8 (2024-04-01)[2025-02-12]. https://kns.cnki.net/kcms/detail/41.1461.TK.20240328.2244.002.html. | |
[13] | 袁俊球, 王迪, 谢小锋, 等. 基于广义天气分类的ICEEMDAN-LSTM网络光伏发电功率短期预测[J]. 综合智慧能源, 2024, 46(9): 53-60. |
YUAN Junqiu, WANG Di, XIE Xiaofeng, et al. Study of short-term PV power prediction based on ICEEMDAN-LSTM networks under generalized weather classifications[J]. Integrated Intelligent Energy, 2024, 46(9): 53-60. | |
[14] | OGLIARI E, DOLARA A, MANZOLINI G, et al. Physical and hybrid methods comparison for the day ahead PV output power forecast[J]. Renewable Energy, 2017, 113: 11-21. |
[15] | MASSERAN N, RAZALI A M, IBRAHIM K, et al. Fitting a mixture of von mises distributions in order to model data on wind direction in peninsular malaysia[J]. Energy Conversion and Management, 2013, 72: 94-102. |
[16] | IMPRAM S, VARBAK NESE S, ORAL B. Challenges of renewable energy penetration on power system flexibility: A survey[J]. Energy Strategy Reviews, 2020, 31: 100539. |
[17] | MANSOUR AAIT, TILIOUA A, TOUZANI M. Bi-LSTM, GRU and 1D-CNN models for short-term photovoltaic panel efficiency forecasting case amorphous silicon grid-connected PV system[J]. Results in Engineering, 2024, 21: 101886. |
[18] | YANG C, LI S Y, GOU Z H. Spatiotemporal prediction of urban building rooftop photovoltaic potential based on GCN-LSTM[J]. Energy and Buildings, 2025, 334: 115522. |
[19] | 黄牧涛, 邢芳菲, 陈兴邦, 等. 基于K-means聚类和极限学习机组合算法的短期光伏功率预测[J]. 水电能源科学, 2024, 42(2): 217-220, 216. |
HUANG Mutao, XING Fangfei, CHEN Xingbang, et al. Short-term PV power prediction based on K-means clustering and extreme learning machine combination algorithm[J]. Water Resources and Power, 2024, 42(2): 217-220, 216. | |
[20] | NGUYEN-DUC T, DO-DINH H, FUJITA G, et al. Multi 2D-CNN-based model for short-term PV power forecast embedded with Laplacian Attention[J]. Energy Reports, 2024, 12: 2086-2096. |
[21] | DEWI T, MARDIYATI E N, RISMA P, et al. Hybrid machine learning models for pv output prediction: Harnessing random forest and LSTM-RNN for sustainable energy management in aquaponic system[J]. Energy Conversion and Management, 2025, 330: 119663. |
[22] | IHEANETU K J. Solar photovoltaic power forecasting: A review[J]. Sustainability, 2022, 14(24): 17005. |
[23] | KHELIFI R, GUERMOUI M, RABEHI A, et al. Short-term PV power forecasting using a hybrid TVF-EMD-ELM strategy[J]. International Transactions on Electrical Energy Systems, 2023, 2023(1): 6413716. |
[24] | HU K Y, WANG L D, LI W J, et al. Forecasting of solar radiation in photovoltaic power station based on ground-based cloud images and BP neural network[J]. IET Generation, Transmission and Distribution, 2022, 16(2): 333-350. |
[25] | LIU Z F, LIU H B, ZHANG D M. PSO-BP-based optimal allocation model for complementary generation capacity of the photovoltaic power station[J]. Energy Engineering, 2023, 120(7): 1717-1727. |
[26] | LI G H, WEI X, YANG H. Decomposition integration and error correction method for photovoltaic power forecasting[J]. Measurement, 2023, 208: 112462. |
[27] | 程先龙, 张杰, 李思莹, 等. 基于VMD-BP-BiLSTM的短期风电功率预测[J/OL]. 综合智慧能源, 1-10 (2024-12-12)[2025-02-12]. https://kns.cnki.net/kcms/detail/41.1461.TK.20241211.1634.002.html. |
CHENG Xianlong, ZHANG Jie, LI Siying, et al. Short-term wind power prediction based on VMD-BP-BiLSTM[J/OL]. Integrated Intelligent Energy, 1-10 (2024-12-12)[2025-02-12]. https://kns.cnki.net/kcms/detail/41.1461.TK.20241211.1634.002.html. | |
[28] | 颜高洋, 丁贵立, 许志浩, 等. 基于帝王蝶优化算法的BP神经网络能源预测模型研究[J]. 南昌工程学院学报, 2023, 42(3): 88-94. |
YAN Gaoyang, DING Guili, XU Zhihao, et al. Research on BP neural network energy prediction model based on monarch butterfly optimization algorithm[J]. Journal of Nanchang Institute of Technology, 2023, 42(3): 88-94. | |
[29] | 王登海, 安玥馨, 廖晨博, 等. 基于CNN-LSTM混合神经网络的光伏发电量预测方法研究[J]. 西安石油大学学报(自然科学版), 2024, 39(1): 129-134. |
WANG Denghai, AN Yuexin, LIAO Chenbo, et al. Research on photovoltaic power generation prediction method based on CNN-LSTM hybrid neural network[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2024, 39(1): 129-134. | |
[30] | 袁冰清, 程功, 郑柳刚. BP神经网络基本原理[J]. 数字通信世界, 2018(8): 49-51. |
YUAN Bingqing, CHENG Gong, ZHENG Liugang. Basic principle of BP neural networks[J]. Digital Communication World, 2018(8): 49-51. | |
[31] | 胡祖源, 靳现林, 谭雅之, 等. 基于改进粒子群算法的分布式光伏及储能系统优化配置[J]. 综合智慧能源, 2023, 45(1): 49-57. |
HU Zuyuan, JIN Xianlin, TAN Yazhi, et al. Optimized configuration of distributed photovoltaic and energy storage system based on improved particle swarm algorithm[J]. Integrated Intelligent Energy, 2023, 45(1): 49-57. | |
[32] | 中国气象局. 气候季节划分: QX/T 152—2012[S]. 北京: 气象出版社, 2012. |
[33] | GB/T 9535-2005/IEC 61215:2005 地面用晶体硅光伏组件—设计鉴定和定型[S]. 北京: 中国标准出版社, 2005. |
[34] | 陈美珍, 柳扬, 徐胜彬, 等. 基于天气类型及改进的小波神经网络的光伏发电短期预测[J]. 贵州大学学报(自然科学版), 2022, 39(1): 70-77, 88. |
CHEN Meizhen, LIU Yang, XU Shengbin, et al. Short term forecasting of photovoltaic power generation based on weather type and improved wavelet neural network[J]. Journal of Guizhou University (Natural Sciences), 2022, 39(1): 70-77, 88. |
[1] | 程先龙, 张杰, 李思莹, 杨翼霞, 杨翠飞. 基于VMD-BP-BiLSTM的短期风电功率预测[J]. 综合智慧能源, 2025, 47(6): 20-29. |
[2] | 张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47(3): 32-46. |
[3] | 张元曦, 杨国华, 杨娜, 李祯, 马鑫, 刘浩睿, 南少帅. 基于K-means聚类的LSTM-SVR-DE光伏功率组合预测[J]. 综合智慧能源, 2025, 47(2): 71-78. |
[4] | 袁俊球, 王迪, 谢小锋, 张茜颖, 曹尚, 曹飞, 张经炜. 基于广义天气分类的ICEEMDAN-LSTM网络光伏发电功率短期预测[J]. 综合智慧能源, 2024, 46(9): 53-60. |
[5] | 江善和, 李伟, 徐小艳, 王德凯. 基于变分模态分解改进生成对抗网络的短期风电功率预测[J]. 综合智慧能源, 2024, 46(2): 28-35. |
[6] | 盛瑞祥, 张啸宇. 基于概率TCN-Transformer的短期光伏功率预测模型[J]. 综合智慧能源, 2024, 46(11): 10-18. |
[7] | 王海鸣, 张润之, 周家辉, 徐钢, 耿嘉曦. 离网式风光互补制氢合成绿氨系统容量配置优化分析[J]. 综合智慧能源, 2024, 46(11): 73-82. |
[8] | 乔力晖, 李明澈, 张睿, 方宗杰. 直流微网蓄电池-SMES混合储能系统容量配置方法[J]. 综合智慧能源, 2023, 45(9): 59-64. |
[9] | 胡开永, 刘峰, 吴秀杰, 胡芸清, 郑怡, 田绅. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71. |
[10] | 丁坤, 刘增泉, 张经炜, 杨泽南, 李喆雨. 基于图像奇异值分解的局部遮挡光伏阵列输出特性建模研究[J]. 综合智慧能源, 2023, 45(2): 53-60. |
[11] | 张思亮, 祁麟童, 曲浩维, 臧德华, 周文汉, 王立地. 光伏发电辅助空气源热泵供暖系统研究[J]. 综合智慧能源, 2023, 45(12): 10-19. |
[12] | 孙冠宇, 王永真, 颜艺灿, 王宇飞, 张平, 张兰兰. 油田区域地热+多能互补能源系统技术应用分析[J]. 综合智慧能源, 2023, 45(12): 63-70. |
[13] | 杨晓燕, 谢满承, 郭小璇, 赵岩, 陈翀旻, 陈子民, 廖卓颖. 基于改进原子轨道搜索算法优化随机森林分类器的光伏系统故障诊断[J]. 综合智慧能源, 2023, 45(10): 53-60. |
[14] | 郑真, 朱峰, 马小丽, 田书欣, 姜皓喆. 基于TL-LSTM的新能源功率短期预测[J]. 综合智慧能源, 2023, 45(1): 41-48. |
[15] | 王鑫, 陈祖翠, 卞在平, 王业耀, 吴育苗. 基于粒子群优化算法的智慧微电网风光储容量优化配置[J]. 综合智慧能源, 2022, 44(6): 52-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||