[1] |
朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(8):3027-3048.
|
|
ZHU Qiongfeng, LI Jiateng, QIAO Ji, et al. Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43(8):3027-3048.
|
[2] |
汪鸿, 朱正甲, 陈建华, 等. 基于人工智能技术与物理方法结合的新能源功率预测研究[J]. 高电压技术, 2023, 49(S1):111-117.
|
|
WANG Hong, ZHU Zhengjia, CHEN Jianhua, et al. Research on new energy power prediction based on artificial intelligence technology and physical method[J]. High Voltage Engineering, 2023, 49(S1):111-117.
|
[3] |
王彪, 吕洋, 陈中, 等. 考虑信息时移的分布式光伏机理-数据混合驱动短期功率预测[J]. 电力系统自动化, 2022, 46(11):67-74.
|
|
WANG Biao, LYU Yang, CHEN Zhong, et al. Hybrid mechanism-data-driven short-term power forecasting of distributed photovoltaic considering information time shift[J]. Automation of Electric Power Systems, 2022, 46(11):67-74.
|
[4] |
陈凡, 李智, 丁津津, 等. 考虑光伏机理与数据驱动结合的短期功率预测[J]. 科学技术与工程, 2023, 23(20):8686-8692.
|
|
CHEN Fan, LI Zhi, DING Jinjin, et al. Consider short-term power prediction combining photovoltaic mechanism and data-driven[J]. Science Technology and Engineering, 2023, 23(20):8686-8692.
|
[5] |
李楠, 刘佳佳, 赖心怡, 等. 基于时间序列神经分层插值模型的光伏功率超短期多步预测[J]. 智慧电力, 2024, 52(4):69-77.
|
|
LI Nan, LIU Jiajia, LAI Xinyi, et al. Ultra-short-term multi-step forecasting of photovoltaic power based on time series neural hierarchical interpolation model[J]. Smart Power, 2024, 52(4):69-77.
|
[6] |
时珉, 许可, 王珏, 等. 基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测[J]. 电工技术学报, 2021, 36(11):2298-2305.
|
|
SHI Min, XU Ke, WANG Jue, et al. Short-term photovoltaic power forecast based on grey relational analysis and GeoMAN model[J]. Transactions of China Electrotechnical Society, 2021, 36(11):2298-2305.
|
[7] |
周鑫, 李燕, 曾永辉, 等. 基于SARIMAX-SVR的光伏发电功率预测[J]. 电力系统及其自动化学报, 2024, 36(5):1-8.
|
|
ZHOU Xin, LI Yan, ZENG Yonghui, et al. Forecasting of photovoltaic power generation based on SARIMAX-SVR[J]. Proceedings of the CSU-EPSA, 2024, 36(5):1-8.
|
[8] |
殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7):12-20.
doi: 10.3969/j.issn.2097-0706.2024.07.002
|
|
YIN Linfei, MENG Yujie. Short-term wind power forecasting method based on DenseNe convolutional neural network[J]. Integrated Intelligent Energy, 2024, 46(7):12-20.
doi: 10.3969/j.issn.2097-0706.2024.07.002
|
[9] |
袁俊球, 王迪, 谢小锋, 等. 基于广义天气分类的ICEEMDAN-LSTM网络光伏发电功率短期预测[J]. 综合智慧能源, 2024, 46(9):53-60.
doi: 10.3969/j.issn.2097-0706.2024.09.007
|
|
YUAN Junqiu, WANG Di, XIE Xiaofeng, et al. Short-term photovoltaic power forecasting based on generalized weather classification and ICEEMDAN-LSTM network[J]. Integrated Intelligent Energy, 2024, 46(9):53-60.
doi: 10.3969/j.issn.2097-0706.2024.09.007
|
[10] |
盛瑞祥, 张啸宇. 基于概率TCN-Transformer的短期光伏功率预测模型[J]. 综合智慧能源, 2024, 46(11):10-18.
doi: 10.3969/j.issn.2097-0706.2024.11.002
|
|
SHENG Ruixiang, ZHANG Xiaoyu. Short-term photovoltaic power forecasting model based on probabilistic TCN-transformer[J]. Integrated Intelligent Energy, 2024, 46(11):10-18.
doi: 10.3969/j.issn.2097-0706.2024.11.002
|
[11] |
殷豪, 李奕甸, 谢智锋, 等. 混合图神经网络和门控循环网络的短期光伏功率预测[J]. 太阳能学报, 2024, 45(3):523-532.
|
|
YIN Hao, LI Yidian, XIE Zhifeng, et al. Short-term photovoltaic power prediction method based on mixed graph neural network and gated recurrent unit network[J]. Acta Energiae Solaris Sinica, 2024, 45(3):523-532.
|
[12] |
李芬, 孙凌, 王亚维, 等. 基于CEEMDAN-GSA-LSTM和SVR的光伏功率短期区间预测[J]. 上海交通大学学报, 2024, 58(6):806-818.
doi: 10.16183/j.cnki.jsjtu.2022.511
|
|
LI Fen, SUN Ling, WANG Yawei, et al. Short-term interval forecasting of photovoltaic power based on CEEMDAN-GSA-LSTM and SVR[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6):806-818.
|
[13] |
黄牧涛, 邢芳菲, 陈兴邦, 等. 基于K-means聚类和极限学习机组合算法的短期光伏功率预测[J]. 水电能源科学, 2024, 42(2):217-220,216.
|
|
HUANG Mutao, XING Fangfei, CHEN Xingbang, et al. Short-term PV power prediction based on K-means clustering and extreme learning machine combination algorithm[J]. Water Resources and Power, 2024, 42(2): 217-220,216.
|
[14] |
唐雅洁, 林达, 倪筹帷, 等. 基于XGBoost的双层协同实时校正超短期光伏预测[J]. 电力系统自动化, 2021, 45(7):18-27.
|
|
TANG Yajie, LIN Da, NI Chouwei, et al. XGBoost based bi-layer collaborative real-time calibration for ultra-short-term photovoltaic prediction[J]. Automation of Electric Power Systems, 2021, 45(7):18-27.
|
[15] |
何威, 苏中元, 史金林, 等. 基于双重注意力GRU与相似修正的光伏功率预测[J]. 太阳能学报, 2024, 45(3):480-487.
|
|
HE Wei, SU Zhongyuan, SHI Jinlin, et al. Photovoltaic power forecasting based on dual-attention-GRU and similarity modification[J]. Acta Energiae Solaris Sinica, 2024, 45(3):480-487.
|
[16] |
王海军, 居蓉蓉, 董颖华. 基于时空关联特征与B-LSTM模型的分布式光伏功率区间预测[J]. 中国电力, 2024, 57(7):74-80.
|
|
WANG Haijun, JU Rongrong, DONG Yinghua. Distributed photovoltaic power interval prediction based on spatio-temporal correlation feature and B-LSTM model[J]. Electric Power, 2024, 57(7):74-80.
|
[17] |
王东风, 刘婧, 黄宇, 等. 结合太阳辐射量计算与CNN-LSTM组合的光伏功率预测方法研究[J]. 太阳能学报, 2024, 45(2):443-450.
doi: 10.19912/j.0254-0096.tynxb.2022-1542
|
|
WANG Dongfeng, LIU Jing, HUANG Yu, et al. Photovoltaic power prediction method combination solar radiation calculation and CNN-LSTM[J]. Acta Energiae Solaris Sinica, 2024, 45(2):443-450.
doi: 10.19912/j.0254-0096.tynxb.2022-1542
|
[18] |
FEI W, XUAN Z M, ZHAO Z, et al. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework[J]. Energy Conversion and Management, 2020, 212:112766.
|
[19] |
李鹏钦, 张长胜, 李英娜, 等. 改进Stacking算法的光伏发电功率预测[J]. 应用科学学报, 2022, 40(2): 288-301.
|
|
LI Pengqin, ZHANG Changsheng, LI Yingna, et al. Photovoltaic power forecast improved Stacking algorithm[J]. Journal of Applied Sciences, 2022, 40(2):288-301.
|
[20] |
何之倬, 张颖, 郑刚, 等. 基于极限学习机模型参数优化的光伏功率区间预测技术[J]. 上海交通大学学报, 2024, 58(3):285-294.
doi: 10.16183/j.cnki.jsjtu.2022.338
|
|
HE Zhizhuo, ZHANG Ying, ZHENG Gang, et al. Interval prediction technology of photovoltaic power based on parameter optimization of extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3):285-294.
|
[21] |
ZANG H X, CHENG L L, TAO D, et al. Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning[J]. Electrical Power and Energy Systems, 2020, 118:105790.
|
[22] |
ZANG H X, LING L, LI S, et al. Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations[J]. Renewable Energy, 2020, 160:26-41.
|
[23] |
谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8):75-81.
doi: 10.19912/j.0254-0096.tynxb.2021-0005
|
|
TAN Haiwang, YANG Qiliang, XING Jianchun, et al. Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta Energiae Solaris Sinica, 2022, 43(8):75-81.
doi: 10.19912/j.0254-0096.tynxb.2021-0005
|
[24] |
AGGA A, ABBOU A, LABBADI M, et al. CNN-LSTM:An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production[J]. Electric Power Systems Research, 2022, 208:107908.
|
[25] |
SI Z Y, MING Y, YU Y X, et al. Photovoltaic power forecast based on satellite images considering effects of solar position[J]. Applied Energy, 2021, 302:117514.
|