综合智慧能源 ›› 2025, Vol. 47 ›› Issue (2): 71-78.doi: 10.3969/j.issn.2097-0706.2025.02.007

• 基于AI的新型电力系统调度 • 上一篇    下一篇

基于K-means聚类的LSTM-SVR-DE光伏功率组合预测

张元曦(), 杨国华*(), 杨娜, 李祯, 马鑫, 刘浩睿, 南少帅   

  1. 宁夏大学 电子与电气工程学院,银川 750021
  • 收稿日期:2024-10-15 修回日期:2024-11-21 出版日期:2025-02-25
  • 通讯作者: * 杨国华(1972),男,教授,硕士生导师,从事电力系统自动化与智能配电网方面的研究,ygh@nxu.edu.cn
  • 作者简介:张元曦(2000),男,硕士生,从事人工智能算法在新型电力系统中的应用方面的研究,2577621195@qq.com
  • 基金资助:
    宁夏大学研究生创新项目(CXXM2024-01)

Photovoltaic power prediction based on K-means clustering and the LSTM-SVR-DE model

ZHANG Yuanxi(), YANG Guohua*(), YANG Na, LI Zhen, MA Xin, LIU Haorui, NAN Shaoshuai   

  1. School of Electronic and Electrical Engineering,Ningxia University,Yinchuan 750021,China
  • Received:2024-10-15 Revised:2024-11-21 Published:2025-02-25
  • Supported by:
    Ningxia University Graduate Innovation Project(CXXM2024-01)

摘要:

为进一步提高光伏发电功率预测的准确性,提出一种基于长短期记忆神经网络(LSTM)和支持向量回归(SVR)的组合预测模型。分别利用LSTM和SVR模型对光伏功率进行预测,在此基础上采用Stacking堆叠集成的策略对2种单一模型预测结果进行线性组合,并使用差分进化算法(DE)寻找最佳组合权重。最后,对宁夏某光伏电站的真实数据进行仿真和对比研究,结果表明该方法对比LSTM和SVR模型预测误差减小约70%。

关键词: K-means聚类, LSTM神经网络, 支持向量回归, 差分进化法, 光伏功率预测

Abstract:

To improve the accuracy of photovoltaic power prediction, a combined prediction model based on Long Short-Term Memory(LSTM) neural networks and Support Vector Regression(SVR) was proposed. Both the LSTM and SVR models were used separately to predict photovoltaic power. On this basis, a Stacking ensemble strategy was employed to linearly combine the predictions of these two models, with the Differential Evolution(DE) algorithm optimizing the weight coefficients. Simulations and comparative analyses were conducted using real data from a photovoltaic power station in Ningxia. The results showed that the proposed method reduced prediction errors by approximately 70% compared to the LSTM and SVR models.

Key words: K-means clustering, LSTM neural network, support vector regression, differential evolution, photovoltaic power prediction

中图分类号: