综合智慧能源 ›› 2023, Vol. 45 ›› Issue (9): 59-64.doi: 10.3969/j.issn.2097-0706.2023.09.008

• 储能系统 • 上一篇    下一篇

直流微网蓄电池-SMES混合储能系统容量配置方法

乔力晖(), 李明澈(), 张睿, 方宗杰   

  1. 兰州交通大学 新能源与动力工程学院,兰州 730070
  • 收稿日期:2023-01-02 修回日期:2023-04-20 出版日期:2023-09-25
  • 通讯作者: * 李明澈(1987),男,副教授,博士,从事微电网协调控制方面的研究,mcli@mail.lzjtu.cn
  • 作者简介:乔力晖(1998),女,在读硕士研究生,从事混合储能系统协调控制方面的研究,1569153093@qq.com
  • 基金资助:
    甘肃省青年科技基金计划(20JR10RA263);兰州交通大学校青年基金项目(636006)

Capacity configuration method for a battery-SMES hybrid energy storage system in a DC microgrid

QIAO Lihui(), LI Mingche(), ZHANG Rui, FANG Zongjie   

  1. School of Energy and Power Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
  • Received:2023-01-02 Revised:2023-04-20 Published:2023-09-25
  • Supported by:
    Gansu Youth Science and Technology Fund Program(20JR10RA263);Lanzhou Jiaotong University Youth Fund Project(636006)

摘要:

配置混合储能系统(HESS)可以有效减轻光伏发电输出功率波动性对直流微网的安全可靠运行带来的不利影响。为了更好地利用超导磁储能(SMES)响应速度快、功率密度高、效率高、可以无损储存电能等优点,基于与蓄电池组合而成的HESS的互补特性提出了以提高HESS经济性为目标的能量管理策略。对蓄电池-SMES HESS建立系统全生命周期成本(LCC)模型及其约束条件。对HESS进行容量优化配置可以有效降低系统成本,在满足系统功率要求的前提下,将最小LCC作为目标函数,通过引入加速因子的粒子群算法对系统容量进行配置,并结合算例建立微网模型,验证所提容量配置策略的有效性。

关键词: 光伏发电, 直流微网, 混合储能系统, 超导磁储能, 容量配置, 蓄电池

Abstract:

The configuration of a hybrid energy storage system(HESS) can effectively mitigate the adverse effects of PV power output volatility on the safe and reliable operation of a DC microgrid. In order to make better use of the advantages of superconducting magnetic storage(SMES),such as fast response,high power density,high efficiency and the ability to store electricity without energy loss,an energy management strategy is proposed based on the complementarity of a HESS in a battery pack,to improve the economy of HESSs. Then, life cycle cost(LCC)model and its constraints are proposed. The capacity optimization configuration of the HESS can effectively reduce its system cost. Under the premise of satisfying the power requirements on the system,with the LCC as the objective function, the configuration of the HESS is obtained by particle swarm optimization with acceleration coefficients. The effectiveness of the proposed capacity allocation strategy is verified by a case in a microgrid.

Key words: photovoltaic power generation, DC microgrid, hybrid energy storage system, superconducting magnetic energy storage, capacity configuration, battery

中图分类号: