综合智慧能源 ›› 2025, Vol. 47 ›› Issue (8): 77-88.doi: 10.3969/j.issn.2097-0706.2025.08.009
• 源网荷储优化调度 • 上一篇
耿直1(), 江雨晨1(
), 陈柯宇1, 李一帆1, 李仁凤1, 王璇璇2, 孙千胜1
收稿日期:
2024-08-19
修回日期:
2024-10-10
出版日期:
2024-11-20
作者简介:
耿直(1991),男,讲师,博士,从事清洁可再生能源利用方面的研究,zhgz@zua.edu.cn;基金资助:
GENG Zhi1(), JIANG Yuchen1(
), CHEN Keyu1, LI Yifan1, LI Renfeng1, WANG Xuanxuan2, SUN Qiansheng1
Received:
2024-08-19
Revised:
2024-10-10
Published:
2024-11-20
Supported by:
摘要:
太阳能与燃气-蒸汽联合循环(GTCC)中的底循环具有很好的热品位匹配性,不同的光热耦合方式对于GTCC的运行特性具有不同的影响。主要利用Ebsilon仿真模拟软件进行参数计算,依次构建了3类太阳能与余热锅炉分级耦合的热力学模型,并基于热力学定律,分析太阳能与以航改型燃气轮机为主机的GTCC互补发电系统的底循环耦合时的静态互补特性,引入一种定量评价指标,对比得出最佳耦合方案,并进一步探究最佳耦合方案下流量配比对系统运行性能的影响。结果表明,在设计工况下,太阳能只耦合在一级受热面时系统发电功率增加最多,相对提高1.08%;在仅耦合在高压受热面的情况下,循环效率相比传统系统提高15.30%,系统排烟温度可下降约11.38%,且20%的质量流量占比热量利用更有效,可降低排烟温度6.30 ℃;随着质量流量占比的增大,系统的发电功率呈下降趋势,最大与最小发电功率之间相差7.102 MW。在可控变化范围内,20%的质量流量占比使系统发电功率最高,耦合在高压受热面的ISCC系统㶲损9.954 MW,㶲效率63.67%。
中图分类号:
耿直, 江雨晨, 陈柯宇, 李一帆, 李仁凤, 王璇璇, 孙千胜. 不同耦合方式下太阳能燃气-蒸汽联合循环热互补系统特性分析[J]. 综合智慧能源, 2025, 47(8): 77-88.
GENG Zhi, JIANG Yuchen, CHEN Keyu, LI Yifan, LI Renfeng, WANG Xuanxuan, SUN Qiansheng. Analysis of the characteristics of integrated solar combined cycle under different coupling methods[J]. Integrated Intelligent Energy, 2025, 47(8): 77-88.
[1] |
张琦, 田硕硕, 沈佳林. 中国钢铁行业碳达峰碳中和时间表与路线图[J]. 钢铁, 2023, 58(9): 59-68.
doi: 10.13228/j.boyuan.issn0449-749x.20230123 |
ZHANG Qi, TIAN Shuoshuo, SHEN Jialin. Roadmap and timetable for achieving carbon peak and carbon neutrality of China's iron and steel industry[J]. Iron & Steel, 2023, 58(9): 59-68. | |
[2] | ZHANG Z X, DUAN L Q, WANG Z, et al. Integration optimization of integrated solar combined cycle(ISCC) system based on system/solar photoelectric efficiency[J]. Energies, 2023,16:3593-3615. |
[3] | 施磊, 李孝堂. 中国航改燃气轮机的现状及发展[J]. 航空发动机, 2004, 30(2): 54-58. |
SHI Lei, LI Xiaotang. Current status and progress of aeroderivative gas turbines of China[J]. Aeroengine, 2004, 30(2): 54-58. | |
[4] | TURAN O, AYDIN H. Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine[J]. Energy, 2014, 74: 638-650. |
[5] | 苗森. 航机改型燃气轮机的应用与发展[J]. 现代制造技术与装备, 2017, 53(8): 128-129. |
MIAO Sen. Application and development of aircraft modified gas turbine[J]. Modern Manufacturing Technology and Equipment, 2017, 53(8): 128-129. | |
[6] | 刘培军, 李辉全, 张凤梅, 等. 我国航改型燃气轮机发展现状及建议[J]. 燃气轮机技术, 2019, 32(2): 8-13. |
LIU Peijun, LI Huiquan, ZHANG Fengmei, et al. Current status and suggestions of China's aero derivative gas turbine development[J]. Gas Turbine Technology, 2019, 32(2): 8-13. | |
[7] | 陈向阳, 史炜. 航改型燃气轮机在工业园区综合能源系统中的应用探讨[J]. 华电技术, 2019, 41(11): 57-61. |
CHEN Xiangyang, SHI Wei. Study of aero-derivative gas turbines applied in industrial park integrated energy systems[J]. Huadian Technology, 2019, 41(11): 57-61. | |
[8] | MONTES M J, ROVIRA A, MUÑOZ M, et al. Performance analysis of an integrated solar combined cycle using direct steam generation in parabolic trough collectors[J]. Applied Energy, 2011, 88(9): 3228-3238. |
[9] | ELMORSY L, MOROSUK T, TSATSARONIS G. Comparative exergoeconomic evaluation of integrated solar combined-cycle(ISCC)configurations[J]. Renewable Energy, 2022, 185: 680-691. |
[10] | ELMOHLAWY A E, OCHKOV V F, KAZANDZHAN B I. Study and analysis the performance of two integrated solar combined cycle[J]. Energy Procedia, 2019, 156: 79-84. |
[11] | TEMRAZ A, ALOBAID F, LINK J, et al. Development and validation of a dynamic simulation model for an integrated solar combined cycle power plant[J]. Energies, 2021, 14(11):3304. |
[12] | ELMOHLAWY A E, OCHKOV V F, KAZANDZHAN B I. Thermal performance analysis of a concentrated solar power system (CSP) integrated with natural gas combined cycle (NGCC) power plant[J]. Case Studies in Thermal Engineering, 2019, 14: 100458. |
[13] | BRODRICK P G, BRANDT A R, DURLOFSKY L J. Operational optimization of an integrated solar combined cycle under practical time-dependent constraints[J]. Energy, 2017, 141: 1569-1584. |
[14] | ROVIRA A, ABBAS R, SÁNCHEZ C, et al. Proposal and analysis of an integrated solar combined cycle with partial recuperation[J]. Energy, 2020, 198: 117379. |
[15] |
张金平, 周强, 王定美, 等. 太阳能光热发电技术及其发展综述[J]. 综合智慧能源, 2023, 45(2): 44-52.
doi: 10.3969/j.issn.2097-0706.2023.02.006 |
ZHANG Jinping, ZHOU Qiang, WANG Dingmei, et al. Review on solar thermal power generation technologies and their development[J]. Integrated Intelligent Energy, 2023, 45(2): 44-52.
doi: 10.3969/j.issn.2097-0706.2023.02.006 |
|
[16] | 吕志鹏. 新型太阳能热互补联合循环发电系统研究[D]. 北京: 华北电力大学, 2018. |
LYU Zhipeng. Study on a new solar thermal complementary combined cycle power generation system[D]. Beijing: North China Electric Power University, 2018. | |
[17] | 王树成, 付忠广, 张高强, 等. 太阳能燃气联合循环系统热经济性研究[J]. 太阳能学报, 2020, 41(4): 86-91. |
WANG Shucheng, FU Zhongguang, ZHANG Gaoqiang, et al. Research on thermal economy of solar gas combined cycle system[J]. Acta Energiae Solaris Sinica, 2020, 41(4): 86-91. | |
[18] | 杨谱, 段立强, 潘盼. ISCC发电系统研究进展[J]. 华电技术, 2020, 42(4): 47-56. |
YANG Pu, DUAN Liqiang, PAN Pan. Research progress in ISCC power generation system[J]. Huadian Technology, 2020, 42(4): 47-56. | |
[19] | 曲万军. 基于燃气-蒸汽联合循环系统的太阳能热互补发电(ISCC)集成特性研究[D]. 北京: 华北电力大学, 2016. |
QU Wanjun. Study on the integrated characteristics of solar thermal complementary power generation (ISCC) based on gas-steam combined cycle system[D]. Beijing: North China Electric Power University, 2016. | |
[20] |
杨丽波, 段立强, 陈彪. 耦合太阳能的燃气轮机动态性能与控制特性研究[J]. 太阳能学报, 2022, 43(12): 134-143.
doi: 10.19912/j.0254-0096.tynxb.2021-0739 |
YANG Libo, DUAN Liqiang, CHEN Biao. Research on dynamic performance and control characteristics of gas turbine coupled with solar energy[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 134-143.
doi: 10.19912/j.0254-0096.tynxb.2021-0739 |
|
[21] | 张楠, 段立强, 丁泽宇, 等. 三种槽式太阳能热互补联合循环发电系统性能分析[J]. 中国电力, 2020, 53(4):169-176. |
ZHANG Nan, DUAN Liqiang, DING Zeyu, et al. Performance analysis of three kinds of integrated trough solar energy combined cycle systems[J]. Electric Power, 2020, 53(4): 169-176. | |
[22] | 杨谱. 太阳能燃气-蒸汽联合循环热互补发电系统建模及优化[D]. 北京: 华北电力大学, 2020. |
YANG Pu. Modeling and optimization of solar gas-steam combined cycle thermal complementary power generation system[D]. Beijing: North China Electric Power University, 2020. | |
[23] | 祖航, 王秋颖. 环境温度及负荷率对燃气-蒸汽联合循环热电联产机组性能的影响[J]. 华电技术, 2019, 41(11): 49-52. |
ZU Hang, WANG Qiuying. Effects of ambient temperature and load ratio on performance of gas-steam combined cycle cogeneration units[J]. Huadian Technology, 2019, 41(11): 49-52. | |
[24] | 闻雪友, 任兰学, 祁龙, 等. 舰船燃气轮机发展现状、方向及关键技术[J]. 推进技术, 2020, 41(11):2401-2407. |
WEN Xueyou, REN Lanxue, QI Long, et al. Development and key technologies in marine gas turbine[J]. Journal of Propulsion Technology, 2020, 41(11): 2401-2407. | |
[25] | 龚光英. 航改工业燃气轮机设计特点分析[J]. 燃气涡轮试验与研究, 2012, 25(S1): 55-60. |
GONG Guangying. Design analysis of aero-derivative industrial gas turbines[J]. Gas Turbine Experiment and Research, 2012, 25(S1): 55-60. | |
[26] | 贺培. 400 kW双轴微型燃气轮机建模与仿真研究[D]. 长沙: 长沙理工大学, 2022. |
HE Pei. Research on modeling and simulation of 400 kW twin-shaft micro gas turbine[D]. Changsha: Changsha University of Science & Technology, 2022. | |
[27] | 高志超. 抛物槽式太阳能集热技术系统集成研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2011. |
GAO Zhichao. Research on system integration of parabolic trough solar thermal collection technology[D]. Beijing: Institute of Engineering Thermophysics,Graduate University of Chinese Academy of Sciences, 2011. | |
[28] | PETELA R. Exergy of undiluted thermal radiation[J]. Solar Energy, 2003, 74(6): 469-488. |
[29] | 张祖贤. 太阳能热互补联合循环系统集成机理与全工况特性[D]. 北京: 华北电力大学, 2023. |
ZHANG Zuxian. Integration mechanism and full-condition characteristics of solar thermal complementary combined cycle system[D]. Beijing: North China Electric Power University, 2023. | |
[30] |
耿直, 陈柯宇, 刘媛媛, 等. 太阳能与燃气-蒸汽联合循环互补性能分析[J]. 综合智慧能源, 2023, 45(12):79-86.
doi: 10.3969/j.issn.2097-0706.2023.12.010 |
GENG Zhi, CHEN Keyu, LIU Yuanyuan, et al. Complementarity analysis of solar energy and gas turbine combined cycle[J]. Integrated Intelligent Energy, 2023, 45(12): 79-86.
doi: 10.3969/j.issn.2097-0706.2023.12.010 |
[1] | 耿直, 陈柯宇, 刘媛媛, 张斌, 王剑利, 石天庆, 李芳, 顾煜炯. 太阳能与燃气-蒸汽联合循环互补性能分析[J]. 综合智慧能源, 2023, 45(12): 79-86. |
[2] | 万志勇. S109FA燃气-蒸汽联合循环机组RB时汽轮机不卸载的处理及防范措施[J]. 华电技术, 2019, 41(5): 73-75. |
[3] | 马琴1,2,李伟1,2,常娜娜1,2,王宸曦1,2. LM2500+G4型燃气-蒸汽联合循环机组余热加热天然气的技术经济分析[J]. 华电技术, 2018, 40(7): 59-61. |
[4] | 王林,王红雨,张亚夫,高景辉,孟颖琪. 燃气-蒸汽联合循环余热锅炉吹管工艺及优化[J]. 华电技术, 2018, 40(6): 73-76. |
[5] | 刘亚峰,杜舰川,王继强. 汽轮机TSI轴向位移信号异常原因分析及处理[J]. 华电技术, 2017, 39(8): 55-57. |
[6] | 蔡雨1,赵丽娟2,丁勇能2,李蔚1. S109FA燃气-蒸汽联合循环机组D10型汽轮机性能诊断分析[J]. 华电技术, 2017, 39(6): 28-31. |
[7] | 吴敏杰,汤明峰. 燃气-蒸汽联合循环供热调峰机组热态启动优化[J]. 华电技术, 2016, 38(7): 25-27. |
[8] | 孙路长1,沈煜晖1,斋滕聪2,莫莉萍3,牛建宇1,田利娟1. 燃气-蒸汽联合循环电厂实施碳捕集的可行性研究[J]. 华电技术, 2016, 38(4): 1-7. |
[9] | 王继强,刘亚峰. 燃气-蒸汽联合循环机组自动发电控制优化[J]. 华电技术, 2016, 38(10): 20-21. |
[10] | 徐振华. 自动发电控制在燃气-蒸汽联合循环电厂中的应用[J]. 华电技术, 2016, 38(1): 9-12. |
[11] | 伍刚,刘岗,张少勇. 燃气-蒸汽联合循环机组低压蒸汽管路吹洗措施[J]. 华电技术, 2015, 37(6): 36-38. |
[12] | 王立红. 燃气-蒸汽联合循环机组低压蒸汽氢电导率超标分析[J]. 华电技术, 2015, 37(3): 58-60. |
[13] | 吴凡. S109FA联合循环机组发电机逆功率保护动作原因分析[J]. 华电技术, 2014, 36(4): 57-60. |
[14] | 张泰山;卢士文;朱伟. 9E燃气-蒸汽联合循环汽轮机抽汽调节阀缺陷处理[J]. 华电技术, 2013, 35(4): 47-49. |
[15] | 曾荣鹏;郑淑芳;谢李兵. 大型燃气-蒸汽联合循环供热电站选型分析[J]. 华电技术, 2013, 35(4): 10-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||