综合智慧能源 ›› 2023, Vol. 45 ›› Issue (5): 46-62.doi: 10.3969/j.issn.2097-0706.2023.05.006
收稿日期:
2022-09-29
修回日期:
2022-12-08
出版日期:
2023-05-25
通讯作者:
*胡勋(1983),男,教授,博士生导师,博士,从事固体废弃物资源化利用、生物质基炭材料制备和应用、多相催化(水蒸气重整制氢、加氢和酸催化)等方面的研究,xun.hu@outlook.com。作者简介:
蒋雨辰(1998),男,在读硕士研究生,从事固体废弃生物质热解转化、生物质基炭材料的制备及功能化等方面的研究,jiangyuchen1998@126.com;基金资助:
JIANG Yuchen(), LI Qingyang(
), HU Xun*(
)
Received:
2022-09-29
Revised:
2022-12-08
Published:
2023-05-25
Supported by:
摘要:
随着社会和经济的发展,农林废弃物、生活垃圾、市政污泥及其他有机固体废弃物的无害化处理受到广泛关注。有机固体废弃物中含有大量碳源,通常的处理方法多是填埋、焚烧和作物残余物还土还田,既造成环境污染,又导致碳源资源的浪费。微波热解(MP)是一种比较新颖的生物质热解处理方式,其具有升温速率快、生物质受热均匀、加热效率高等优点。MP可能会以不同于传统管式炉加热的方式影响生物炭的性质,这是因为在不同的加热方式下,传热和传质方式是不同的。主要总结归纳了MP废弃生物质过程中得到的固体生物炭的性质,包括MP方式及特点的描述,对比不同生物质在不同的微波功率和温度影响下,其热解产物的分布和产率变化。着重比较了不同废弃生物质原料经MP后所得生物炭的形貌差异、生物炭表面官能团变化、生物炭孔结构和比表面积的差异、生物炭中各元素的变化及生物炭热稳定性,以及微波生物炭和常规生物炭的差异。
中图分类号:
蒋雨辰, 李清扬, 胡勋. 基于微波热解技术制备生物炭的研究进展[J]. 综合智慧能源, 2023, 45(5): 46-62.
JIANG Yuchen, LI Qingyang, HU Xun. Research progress of biochar prepared by microwave pyrolysis technology[J]. Integrated Intelligent Energy, 2023, 45(5): 46-62.
表1
不同生物质MP后所得生物炭、生物油及气体的产率
原料 | 微波功率/W | 温度/℃ | 生物炭/% | 生物油/% | 气体/% |
---|---|---|---|---|---|
straw[ | 1 200 | 200 | 33.70 | 28.7 | 37.6 |
willow[ | 1 200 | 170 | 27.30 | 42.2 | 30.5 |
malaysian wood[ | 1 000 | 800 | 21.80 | 26.2 | 52.0 |
rubber wood[ | 1 000 | 800 | 21.40 | 19.1 | 59.5 |
corn stover[ | 500 | 522 | 15.00 | 12.0 | 73.0 |
oil palm shell[ | 600 | 900 | 26.00 | 39.0 | 35.0 |
moso bamboo[ | 800 | 650 | 18.00 | 35.0 | 47.0 |
chlorella[ | — | 900 | 28.40 | 14.7 | 56.9 |
corn stover[ | 500 | — | 19.00 | 18.0 | 63.0 |
wheat straw[ | 800 | — | 27.40 | 26.1 | 46.5 |
cordgrass[ | 700 | 650 | 26.70 | 28.0 | 45.3 |
food waste[ | 300 | — | 81.60 | 11.9 | 6.5 |
cellulose[ | 300 | 200~280 | 35.00~70.00 | 45.0~52.0 | 5.0~35.0 |
palm kernel shell[ | 100~1 000 | — | 40.00 | — | — |
tarfaya oil shale[ | 300~600 | — | — | 5.6~4.2 | 9.3~14.2 |
pine wood sawdust[ | 1 000 | 470 | 17.30~40.30 | 16.0~26.0 | 36.0~60.0 |
core derived plastic bags[ | 1 200~3 000 | 345~535 | 11.10~32.70 | 22.3~47.6 | 28.7~46.2 |
waste multilayer packaging beverage[ | 3 000 | 345~600 | 28.70~43.30 | 31.1~60.6 | 9.0~42.5 |
oil palm shell[ | 450 | 500~650 | 26.00~42.00 | 20.0~28.0 | 37.0~46.0 |
cornstalk bale[ | 334~668 | — | — | — | 50.0 |
douglas fir[ | 700 | 315~485 | — | 12.5~48.1 | 11.8~57.5 |
rice straw[ | 300~500 | — | 26.00~31.00 | 50.0 | 18.0~26.0 |
sewage sludge and rice straw[ | 100~400 | — | 38.71~77.75 | — | — |
polystyrenee[ | 2 000 | — | 19.00 | 71.0 | 9.0 |
sugarcane bagasse[ | — | 550 | 61.90~83.20 | 14.4~22.0 | 2.4~16.1 |
表2
不同生物质MP后所得生物炭的比表面积和孔容积
原料 | 微波功率/W | 温度/℃ | 比表面积/(m2·g-1) | 孔容积/(cm3·g-1) |
---|---|---|---|---|
straw[ | 1 200 | 200 | 1.1 | 0.37 |
willow[ | 1 200 | 170 | 3.9 | 2.10 |
malaysian wood[ | 1 000 | 800 | 350.9 | 0.19 |
rubber wood[ | 1 000 | 800 | 238.6 | 0.16 |
sludge[ | 1 200 | — | 459.0 | 0.23 |
spruce sawdust[ | 400 | — | 341.0 | 0.19 |
tobacco straw[ | — | 550 | 9.9 | 0.03 |
cotton stalk[ | 600 | 700 | 94.5 | 0.21 |
flavedo[ | 700 | — | 1 015.0 | 0.50 |
wheat straw[ | 600 | — | 32.0 | 0.03 |
moso bamboo[ | 800 | — | 10.5 | 0.02 |
pecan shell[ | 400 | — | 306.0 | 0.18 |
waste oil[ | — | — | 124.0 | 0.13 |
washed rice husk[ | — | — | 267.8 | 0.20 |
washed and pretreated rice husk[ | — | — | 157.8 | 0.13 |
rice straw[ | — | — | 93.0~122.2 | 0.06~0.08 |
wheat straw[ | — | — | 7.0~128.7 | 0.01~0.09 |
rice husk[ | — | — | 217.0 | 0.13 |
pretreated rice husk[ | — | — | 187.7 | 0.13 |
sewage sludge[ | — | — | 24.8~51.5 | 0.02~0.03 |
rice straw[ | — | — | 31.6~122.2 | 0.03~0.08 |
表3
不同生物质MP后所得生物炭中元素的质量分数
原料 | 微波功率/W | 温度/℃ | w(C)/% | w(H)/% | w(N)/% | w(O)/% |
---|---|---|---|---|---|---|
oil palm shell[ | 600 | 900 | 72.2 | 1.20 | 0.60 | 18.7 |
oil shale[ | 600 | 520 | 83.8 | 8.90 | 1.20 | 2.6 |
malaysian wood[ | 1 000 | 800 | 89.3 | 1.20 | 0.34 | 9.2 |
rubber wood[ | 1 000 | 800 | 88.9 | 0.38 | 0.49 | 9.8 |
cornstalk[ | 900 | — | 74.3 | 1.90 | 0.35 | 23.5 |
polystyrene[ | 2 000 | — | 96.2 | 0.52 | 0.13 | — |
paper[ | 2 000 | — | 92.2 | 2.00 | 0.21 | — |
cotton stalk[ | 600 | 700 | 43.5 | 6.40 | 0.62 | 42.9 |
meat[ | 2 000 | — | 91.7 | 1.60 | 2.00 | — |
straw[ | — | 800 | 64.7 | 0.50 | 0.80 | 1.5 |
municipalsolid waste[ | — | 800 | 21.1 | 0.20 | 0.80 | 0.9 |
pecan shell[ | 400 | — | 82.0 | 1.30 | 0.10 | 16.7 |
waste oil[ | — | — | 86.3 | 4.00 | 0.20 | 9.0 |
rice husk[ | — | — | 44.7 | 1.80 | 0.73 | 7.7 |
pretreated rice husk[ | — | — | 48.9 | 1.90 | 0.90 | 6.1 |
packaging beverage[ | — | — | 66.0 | 1.00 | 0.50 | — |
waste tires[ | — | — | 82.3~92.0 | 0.32~3.20 | 0.00~0.78 | — |
pine sawdust[ | — | — | 89.4~93.1 | 0.98~2.50 | 0.14~0.24 | 5.5~7.7 |
prosopis africana shell[ | — | — | 70.8 | 4.70 | 1.60 | 22.9 |
wood[ | — | — | 59.3~63.9 | 5.80~7.20 | 2.30~2.40 | 28.0~32.0 |
washed rice husk[ | — | — | 44.4 | 1.80 | 0.80 | 8.9 |
washed and pretreated rice husk[ | — | — | 46.0 | 2.00 | 0.80 | 9.5 |
sewage sludge and rice straw[ | — | — | — | — | — | — |
wheat straw[ | — | — | 46.9~64.6 | 0.80~2.10 | 0.53~1.32 | 26.4~45.9 |
waste tire[ | — | — | 85.0~87.7 | 8.50~11.80 | 0.02~0.76 | — |
[1] |
DEMIRBAS M F, BALAT M, BALAT H. Biowastes-to-biofuels[J]. Energy Conversion and Management, 2011, 52(4): 1815-1828.
doi: 10.1016/j.enconman.2010.10.041 |
[2] |
LAVANYA M, MEENAKSHISUNDARAM A, RENGANATHAN S, et al. Hydrothermal liquefaction of freshwater and marine algal biomass: A novel approach to produce distillate fuel fractions through blending and co-processing of biocrude with petrocrude[J]. Bioresource Technology, 2016, 203: 228-235.
doi: 10.1016/j.biortech.2015.12.013 pmid: 26735877 |
[3] |
LIN Y, LIAO Y, YU Z, et al. Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA-FTIR analysis[J]. Energy Conversion and Management, 2016, 118: 345-352.
doi: 10.1016/j.enconman.2016.04.004 |
[4] |
TRIPATHI M, SAHU J, GANESAN P, et al. Effect of temperature on dielectric properties and penetration depth of oil palm shell(OPS) and OPS char synthesized by microwave pyrolysis of OPS[J]. Fuel, 2015, 153: 257-266.
doi: 10.1016/j.fuel.2015.02.118 |
[5] |
LI H, XU J, NYAMBURA S M, et al. Food waste pyrolysis by traditional heating and microwave heating: A review[J]. Fuel, 2022, 324: 124574.
doi: 10.1016/j.fuel.2022.124574 |
[6] |
MUBARAK N, SAHU J, ABDULLAH E, et al. Plam oil empty fruit bunch based magnetic biochar composite comparison for synthesis by microwave-assisted and conventional heating[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 521-528.
doi: 10.1016/j.jaap.2016.06.026 |
[7] |
GUIOTOKU M, RAMBO C R, HOTZA D. Charcoal produced from cellulosic raw materials by microwave-assisted hydrothermal carbonization[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117: 269-275.
doi: 10.1007/s10973-014-3676-8 |
[8] |
CHANG A C C, CHANG H F, LIN F J, et al. Biomass gasification for hydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(21): 14252-14260.
doi: 10.1016/j.ijhydene.2011.05.105 |
[9] |
HADIYA V, POPAT K, VYAS S, et al. Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario,drawbacks and perspectives[J]. Bioresource Technology, 2022, 355: 127303.
doi: 10.1016/j.biortech.2022.127303 |
[10] |
ZHANG Y, FAN S, LIU T, et al. A review of biochar prepared by microwave-assisted pyrolysis of organic wastes[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101873.
doi: 10.1016/j.seta.2021.101873 |
[11] |
MAŠEK O, BUDARIN V, GRONNOW M, et al. Microwave and slow pyrolysis biochar—Comparison of physical and functional properties[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 41-48.
doi: 10.1016/j.jaap.2012.11.015 |
[12] |
ROBINSON J, BINNER E, VALLEJO D B, et al. Unravelling the mechanisms of microwave pyrolysis of biomass[J]. Chemical Engineering Journal, 2022, 430: 132975.
doi: 10.1016/j.cej.2021.132975 |
[13] |
LAM S S, MAHARI W A W, MA N L, et al. Microwave pyrolysis valorization of used baby diaper[J]. Chemosphere, 2019, 230: 294-302.
doi: S0045-6535(19)30950-6 pmid: 31108440 |
[14] |
SUN J, WANG Y C, WANG W L, et al. Application of featured microwave-metal discharge for the fabrication of well-graphitized carbon-encapsulated Fe nanoparticles for enhancing microwave absorption efficiency[J]. Fuel, 2018, 233: 669-676.
doi: 10.1016/j.fuel.2018.06.105 |
[15] |
SUN J, WANG Q, WANG W L, et al. Study on the synergism of steam reforming and photocatalysis for the degradation of Toluene as a tar model compound under microwave-metal discharges[J]. Energy, 2018, 155: 815-823.
doi: 10.1016/j.energy.2018.05.045 |
[16] |
SUN J, WANG W L, ZHAO C, et al. Study on the coupled effect of wave absorption and metal discharge generation under microwave irradiation[J]. Industrial & Engineering Chemistry Research, 2014, 53(5): 2042-2051.
doi: 10.1021/ie403556w |
[17] | SONG Z, YAN Y, XIE M, et al. Effect of steel wires on the microwave pyrolysis of tire powders[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10):13443-13453. |
[18] | ZHANG Y Z, BIAN T T, ZHANG Y, et al. Effective and green tire recycling through microwave pyrolysis[J]. Applied Physics & Engineering, 2018, 19(12): 951-960. |
[19] | MATHIARASU A, PUGAZHVADIVU M. Studies on dielectric properties and microwave pyrolysis of karanja seed[J]. Biomass Conversion and Biorefinery, 2021: 1-11. |
[20] |
MORIWAKI S, MACHIDA M, TATSUMOTO H, et al. Dehydrochlorination of poly (vinyl chloride) by microwave irradiation[J]. Applied Thermal Engineering, 2006, 26(7):745-750.
doi: 10.1016/j.applthermaleng.2005.09.001 |
[21] |
KOBAYASHI J, HORI M, KOBAYASHI N, et al. Selective dechlorination of polyvinyl chloride by microwave irradiation[J]. Journal of Chemical Engineering of Japan, 2019, 52(7):656-661.
doi: 10.1252/jcej.18we219 |
[22] |
HUANG Y F, CHEN W R, CHIUEH P T, et al. Microwave torrefaction of rice straw and pennisetum[J]. Bioresource Technology, 2012, 123: 1-7.
doi: 10.1016/j.biortech.2012.08.006 pmid: 22929739 |
[23] |
HUANG Y F, CHIUEH P T, KUAN W H, et al. Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics[J]. Energy, 2016, 100: 137-144.
doi: 10.1016/j.energy.2016.01.088 |
[24] |
WAN MAHARI W A, ZAINUDDIN N F, WAN NIK W M N, et al. Pyrolysis recovery of waste shipping oil using microwave heating[J]. Energies, 2016, 9(10): 780.
doi: 10.3390/en9100780 |
[25] |
LIANG J, XU X, YU Z, et al. Effects of microwave pretreatment on catalytic fast pyrolysis of pine sawdust[J]. Bioresource Technology, 2019, 293: 122080.
doi: 10.1016/j.biortech.2019.122080 |
[26] |
PIANROJ Y, JUMRAT S, WERAPUN W, et al. Scaled-up reactor for microwave induced pyrolysis of oil palm shell[J]. Chemical Engineering and Processing:Process Intensification, 2016, 106: 42-49.
doi: 10.1016/j.cep.2016.05.003 |
[27] |
LI X, PENG B, LIU Q, et al. Microwave pyrolysis coupled with conventional pre-pyrolysis of the stalk for syngas and biochar[J]. Bioresource Technology, 2022, 348: 126745.
doi: 10.1016/j.biortech.2022.126745 |
[28] |
GANESAPILLAI M, MANARA P, ZABANIOTOU A. Effect of microwave pretreatment on pyrolysis of crude glycerol-olive kernel alternative fuels[J]. Energy Conversion and Management, 2016, 110: 287-295.
doi: 10.1016/j.enconman.2015.12.045 |
[29] |
LAM S S, LIEW R K, WONG Y M, et al. Activated carbon for catalyst support from microwave pyrolysis of orange peel[J]. Waste Biomass Valor, 2017, 8: 2109-2119.
doi: 10.1007/s12649-016-9804-x |
[30] |
HALIM S A, SWITHENBANK J. Characterisation of malaysian wood pellets and rubberwood using slow pyrolysis and microwave technology[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 64-75.
doi: 10.1016/j.jaap.2016.10.021 |
[31] |
HUANG Y F, KUAN W H, CHANG C Y. Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover[J]. Energy, 2018, 143: 696-703.
doi: 10.1016/j.energy.2017.11.022 |
[32] |
PRASHANTH P F, KUMAR M M, VINU R. Analytical and microwave pyrolysis of empty oil palm fruit bunch: Kinetics and product characterization[J]. Bioresource Technology, 2020, 310: 123394.
doi: 10.1016/j.biortech.2020.123394 |
[33] |
DONG Q, LI X, WANG Z, et al. Effect of iron(III) ion on moso bamboo pyrolysis under microwave irradiation[J]. Bioresource Technology, 2017, 243: 755-759.
doi: S0960-8524(17)31095-7 pmid: 28711804 |
[34] |
CHEN C, QI Q, ZHAO J, et al. Study on microwave pyrolysis and production characteristics of Chlorella vulgaris using different compound additives[J]. Bioresource Technology, 2021, 341: 125857.
doi: 10.1016/j.biortech.2021.125857 |
[35] |
HUANG Y F, KUAN W H, CHANG C C, et al. Catalytic and atmospheric effects on microwave pyrolysis of corn stover[J]. Bioresource Technology, 2013, 131: 274-280.
doi: 10.1016/j.biortech.2012.12.177 |
[36] |
ZHAO X, WANG W, LIU H, et al. Microwave pyrolysis of wheat straw:Product distribution and generation mechanism[J]. Bioresource Technology, 2014, 158: 278-285.
doi: 10.1016/j.biortech.2014.01.094 |
[37] |
ZHOU R, LEI H, JULSON J. The effects of pyrolytic conditions on microwave pyrolysis of prairie cordgrass and kinetics[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 172-176.
doi: 10.1016/j.jaap.2013.01.013 |
[38] |
LIU H, MA X, LI L, et al. The catalytic pyrolysis of food waste by microwave heating[J]. Bioresource Technology, 2014, 166: 45-50.
doi: 10.1016/j.biortech.2014.05.020 pmid: 24905041 |
[39] |
Al SHRA'AH A, HELLEUR R. Microwave pyrolysis of cellu-lose at low temperature[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 91-99.
doi: 10.1016/j.jaap.2013.10.007 |
[40] |
ISMAIL K, ISHAK M A M, AB GHANI Z, et al. Microwave-assisted pyrolysis of palm kernel shell: Optimization using response surface methodology (RSM)[J]. Renewable Energy, 2013, 55: 357-365.
doi: 10.1016/j.renene.2012.12.042 |
[41] |
MOKHLISSE A, CHANÂA M B, OUTZOURHIT A. Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation[J]. Fuel, 2000, 79: 733-742.
doi: 10.1016/S0016-2361(99)00209-4 |
[42] |
CHEN M, WANG J, ZHANG M, et al. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 145-150.
doi: 10.1016/j.jaap.2008.03.001 |
[43] |
UNDRI A, ROSI L, FREDIANI M, et al. Microwave assisted pyrolysis of corn derived plastic bags[J]. Journal of Analytical and Applied Pyrolysis, 2014, 108: 86-97.
doi: 10.1016/j.jaap.2014.05.013 |
[44] |
YUAN T, TAHMASEBI A, YU J. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor[J]. Bioresource Technology, 2015, 175: 333-341.
doi: 10.1016/j.biortech.2014.10.108 pmid: 25459840 |
[45] | ABUBAKAR Z, ANI F N. Microwave-assisted pyrolysis of oil palm shell biomass[J]. Jurnal Mekanikal, 2013, 36: 19-30. |
[46] |
ZHAO X, SONG Z, LIU H, et al. Microwave pyrolysis of corn stalk bale: A promising method for direct utilization of large-sized biomass and syngas production[J]. Journal of Analytical and Applied Pyrolysis, 2010, 89: 87-94.
doi: 10.1016/j.jaap.2010.06.001 |
[47] |
BU Q, LEI H, REN S, et al. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass[J]. Bioresource Technology, 2012, 108: 274-279.
doi: 10.1016/j.biortech.2011.12.125 pmid: 22261662 |
[48] |
HUANG Y, CHIUEH P, KUAN W, et al. Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis[J]. Energy, 2015, 89: 974-981.
doi: 10.1016/j.energy.2015.06.035 |
[49] |
MOTASEMI F, AFZAL M T. A review on the microwave-assisted pyrolysis technique[J]. Renewable and Sustainable Energy Reviews, 2013, 28: 317-330.
doi: 10.1016/j.rser.2013.08.008 |
[50] |
JAMARI S S, HOWSE J R. The effect of the hydrothermal carbonization process on palm oil empty fruit bunch[J]. Biomass and Bioenergy, 2012, 47: 82-90.
doi: 10.1016/j.biombioe.2012.09.061 |
[51] | LIN B, CHEN W. Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating[J]. Frontier in Energy Research, 2015, 3: 4. |
[52] |
SONG Z, YANG Y, SUN J, et al. Effect of power level on the microwave pyrolysis of tire powder[J]. Energy, 2017, 127: 571-580.
doi: 10.1016/j.energy.2017.03.150 |
[53] |
YANG D, PENG X, PENG Q, et al. Probing the interfacial forces and surface interaction mechanisms in petroleum production processes[J]. Engineering, 2022.DOI:10.1016/j.eng.2022.06.012.
doi: 10.1016/j.eng.2022.06.012 |
[54] |
ZHANG J, TIAN Y, YIN L, et al. Insight into the effects of biochar as adsorbent and microwave receptor from one-step microwave pyrolysis of sewage sludge[J]. Environmental Science and Pollution Research, 2018, 25: 18424-18433.
doi: 10.1007/s11356-018-2028-9 |
[55] |
WANG X, CHEN H, LUO K, et al. The influence of microwave drying on biomass pyrolysis[J]. Energy & Fuels, 2008, 22(1): 67-74.
doi: 10.1021/ef700300m |
[56] | GAO H, BAI J, WEI Y, et al. Effects of drying pretreatment on microwave pyrolysis characteristics of tobacco stems[J]. Biomass Conversion and Biorefinery, 2022: 1-11. |
[57] |
ZHOU J, WU L, LIANG K, et al. The synergistic mechanism on microwave and MoS2 in coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 580-589.
doi: 10.1016/j.jaap.2018.08.007 |
[58] |
ZI W, CHEN Y, PAN Y, et al. Pyrolysis, morphology and microwave absorption properties of tobacco stem materials[J]. Science of the Total Environment, 2019, 683: 341-350.
doi: 10.1016/j.scitotenv.2019.04.053 |
[59] |
ZHOU G, HUANG Q, YU B, et al. Effect of industrial microwave irradiation on the physicochemical properties and pyrolysis characteristics of lignite[J]. Chinese Journal of Chemical Engineering, 2017, 26(5):1171-1178.
doi: 10.1016/j.cjche.2017.11.002 |
[60] |
SALEMA A A, AFZAL M T, BENNAMOUN L. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology[J]. Bioresource Technology, 2017, 233: 353-362.
doi: S0960-8524(17)30242-0 pmid: 28285228 |
[61] |
HAELDERMANS T, CLAESEN J, MAGGEN J, et al. Microwave assisted and conventional pyrolysis of MDF—Characterization of the produced biochars[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 218-230.
doi: 10.1016/j.jaap.2018.12.027 |
[62] |
DURÁN-JIMÉNEZ G, HERNÁNDEZ-MONTOYA V, MONTES-MORÁN M A, et al. Microwave pyrolysis of pecan nut shell and thermogravimetric, textural and spectroscopic characterization of carbonaceous products[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 160-168.
doi: 10.1016/j.jaap.2018.09.007 |
[63] | FAN J, SHUTTLEWORTH P S, GRONNOW M, et al. Influence of density on microwave pyrolysis of cellulose[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 2916-2920. |
[64] |
GE L C, ZHANG Y W, WANG Z H, et al. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals[J]. Energy Conversion and Management, 2013, 71: 84-91.
doi: 10.1016/j.enconman.2013.03.021 |
[65] |
JING X, DONG J, HUANG H, et al. Interaction between feedstocks, absorbers and catalysts in the microwave pyrolysis process of waste plastics[J]. Journal of Cleaner Production, 2021, 291: 125857.
doi: 10.1016/j.jclepro.2021.125857 |
[66] |
LAM S S, SU M H, NAM W L, et al. Microwave pyrolysis with steam activation in producing activated carbon for removal of herbicides in agricultural surface water[J]. Industrial & Engineering Chemistry Research, 2018, 58(2): 695-703.
doi: 10.1021/acs.iecr.8b03319 |
[67] |
KOSTAS E T, DURÁN-JIMÉNEZ G, SHEPHERD B J, et al. Microwave pyrolysis of olive pomace for bio-oil and bio-char production[J]. Chemical Engineering Journal, 2020, 387: 123404.
doi: 10.1016/j.cej.2019.123404 |
[68] |
MONG G R, CHONG C T, NG J H, et al. Microwave pyrolysis for valorisation of horse manure biowaste[J]. Energy Conversion and Management, 2020, 220: 113074.
doi: 10.1016/j.enconman.2020.113074 |
[69] |
SANGJAN A, NGAMSIRI P, KLOMKLIANG N, et al. Effect of microwave-assisted wet torrefaction on liquefaction of biomass from palm oil and sugarcane wastes to bio-oil and carbon nanodots/nanoflakes by hydrothermolysis and solvothermolysis[J]. Renewable Energy, 2020, 154: 1204-1217.
doi: 10.1016/j.renene.2020.03.070 |
[70] | 谢为, 卜权. 微波热解醋糟制备生物炭及其吸附性能研究[J]. 江苏农业科学, 2020, 48(6):194-199. |
XIE Wei, BU Quan. Preparation of biochar by microwave pyrolysis of vinegar residue and research of its absorbability[J]. Jiangsu Agricultural Sciences, 2020, 48(6): 194-199. | |
[71] |
LESTINSKY P, GRYCOVA B, PRYSZCZ A, et al. Hydrogen production from microwave catalytic pyrolysis of spruce sawdust[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 175-179.
doi: 10.1016/j.jaap.2017.02.008 |
[72] |
DONG Q, REN S, ZHANG S, et al. Role of calcium ion in moso bamboo pyrolysis under microwave irradiation[J]. Fuel Processing Technology, 2021, 211: 106598.
doi: 10.1016/j.fuproc.2020.106598 |
[73] | LAM S S, LIEW R K, CHENG C K, et al. Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char[J]. Applied Catalysis B: Environmental, 2015, 176: 601-617. |
[74] |
WANG N, TAHMASEBI A, YU J, et al. A comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass[J]. Bioresource Technology, 2015, 190: 89-96.
doi: 10.1016/j.biortech.2015.04.038 pmid: 25935388 |
[75] | WANG X H, CHEN H P, DING X J, et al. Properties of gas and char from microwave pyrolysis of pine sawdust[J]. BioResources, 2009, 4(3):946-959. |
[76] |
HUANG Y F, CHIUEH P T, SHIH C H, et al. Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture[J]. Energy, 2015, 84: 75-82.
doi: 10.1016/j.energy.2015.02.026 |
[77] |
LIU Y, CHEN T, GAO B, et al. Comparison between hydrogen-rich biogas production from conventional pyrolysis and microwave pyrolysis of sewage sludge: Is microwave pyrolysis always better in the whole temperature range?[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23322-23333.
doi: 10.1016/j.ijhydene.2020.05.165 |
[78] | 肖春龙. 污泥气化合成气生成特性及其BP神经网络预测模型研究[D]. 杭州: 浙江工业大学, 2015. |
XIAO Chunlong. Study on the sludge gasification syngas generation characteristics and BP neural network prediction model[D]. Hangzhou: Zhejiang University of Technology, 2015. | |
[79] |
LIU S Y, ZHANG Y N, FAN L L, et al. Bio-oil production from sequential two step catalytic fast microwave[J]. Fuel, 2017, 196: 261-268.
doi: 10.1016/j.fuel.2017.01.116 |
[80] |
FENG Y, LI Y, WANG J C, et al. Insights to the microwave effect in the preparation of sorbent for H2S removal:Desulfurization kinetics and characterization[J]. Fuel, 2017, 203: 233-243.
doi: 10.1016/j.fuel.2017.04.095 |
[81] |
BARTOLI M, ROSI L, GIOVANNELLI A, et al. Pyrolysis of α-cellulose using a multimode microwave oven[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 284-296.
doi: 10.1016/j.jaap.2016.05.016 |
[82] |
BARTOLI M, ROSI L, GIOVANNELLI A, et al. Microwave assisted pyrolysis of crop residues from Vitis vinifera[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 305-313.
doi: 10.1016/j.jaap.2017.12.018 |
[83] |
HE L, MA Y, YUE C, et al. Transformation mechanisms of organic S/N/O compounds during microwave pyrolysis of oil shale:A comparative research with conventional pyrolysis[J]. Fuel Processing Technology, 2021, 212: 106605.
doi: 10.1016/j.fuproc.2020.106605 |
[84] |
DOUCET J, LAVIOLETTE J P, FARAG S, et al. Distributed microwave pyrolysis of domestic waste[J]. Waste and Biomass Valorization, 2014, 5: 1-10.
doi: 10.1007/s12649-013-9216-0 |
[85] |
BENEROSO D, ARENILLAS A, MONTES-MORÁN M A, et al. Ecotoxicity tests on solid residues from microwave induced pyrolysis of different organic residues:An addendum[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 329-332.
doi: 10.1016/j.jaap.2016.08.013 |
[86] |
ELAIGWU S E, ROCHER V, KYRIAKOU G, et al. Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis africana shell[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3467-3473.
doi: 10.1016/j.jiec.2013.12.036 |
[87] |
PARSHETTI G K, HOEKMAN S K, BALASUBRAMANIAN R. Chemical,structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches[J]. Bioresource Technology, 2013, 135:683-689.
doi: 10.1016/j.biortech.2012.09.042 |
[88] |
SHANG H, LU R, SHANG L, et al. Effect of additives on the microwave-assisted pyrolysis of sawdust[J]. Fuel Processing Technology, 2015, 131: 167-174.
doi: 10.1016/j.fuproc.2014.11.025 |
[89] |
ZHOU N, DAI L, LV Y, et al. Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production[J]. Chemical Engineering Journal, 2021, 418: 129412.
doi: 10.1016/j.cej.2021.129412 |
[90] |
LIANG J, YU Z, CHEN L, et al. Microwave pretreatment power and duration time effects on the catalytic pyrolysis behaviors and kinetics of water hyacinth[J]. Bioresource Technology, 2019, 286: 121369.
doi: 10.1016/j.biortech.2019.121369 |
[91] |
WU C, BUDARIN V L, WANG M, et al. CO2 gasification of bio-char derived from conventional and microwave pyrolysis[J]. Applied Energy, 2015, 157: 533-539.
doi: 10.1016/j.apenergy.2015.04.075 |
[92] |
GRONNOW M J, BUDARIN V L, MAŠEK O, et al. Torrefaction/biochar production by microwave and conventional slow pyrolysis-comparison of energy properties[J]. Gcb Bioenergy, 2013, 5(2): 144-152.
doi: 10.1111/gcbb.12021 |
[93] | 安杨, 邱晶晶, 李丽丽, 等. 催化重整微藻微波热解挥发分制芳烃和富氢合成气[J]. 可再生能源, 2022, 40(10): 1288-1295. |
AN Yang, QIU Jingjing, LI Lili, et al. Catalytic reforming microalgae and microwave pyrolysis volatile for the production of aromatic hydrocarbons and hydrogen-rich syngas[J]. Renewable Energy Resources, 2022, 40(10): 1288-1295. | |
[94] | 张彤, 王晴东, 王光华, 等. 改性分子筛催化褐煤微波热解挥发分提质研究[J]. 煤化工, 2022, 50(3): 98-103. |
ZHANG Tong, WANG Qingdong, WANG Guanghua, et al. Research on quality improvement of lignite volatiles during microwave pyrolysis catalyzed by modified molecular sieve[J]. Coal Chemical Industry, 2022, 50(3): 98-103. | |
[95] |
蒋华义, 胡娟, 齐红媛, 等. 磁性纳米粒子类型和质量浓度对微波热解含油污泥的影响[J]. 化工进展, 2022, 41(7):3908-3914.
doi: 10.16085/j.issn.1000-6613.2021-1914 |
JIANG Huayi, HU Juan, QI Hongyuan, et al. Effect of magnetic nanoparticles type and mass concentration on oily sludge during microwave pyrolysis[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3908-3914.
doi: 10.16085/j.issn.1000-6613.2021-1914 |
[1] | 李清扬, 李超, 蒋雨辰, 胡勋. 半焦作为固体燃料的应用研究进展[J]. 综合智慧能源, 2023, 45(5): 13-23. |
[2] | 吴思萍1,赵凯1,董永胜2,王学斌3*,白永辉4,刘莉君1,于伟1. 气化细渣浮选脱碳研究进展[J]. 华电技术, 2020, 42(7): 81-85. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||