综合智慧能源 ›› 2024, Vol. 46 ›› Issue (4): 68-77.doi: 10.3969/j.issn.2097-0706.2024.04.009
陈洋1(), 翁伟杰1,2, 黄江东1,2, 邹涛1, 姜伟2,*(
)
收稿日期:
2024-01-21
修回日期:
2024-03-21
出版日期:
2024-04-25
通讯作者:
*姜伟(1988),男,高级工程师,博士,从事海关系统内电池系统、电池控制系统、电池材料等检测评价等方面的研究,jiangw@iqtcnet.cn。作者简介:
陈洋(1988),女,讲师,博士,从事电池管理系统研究、高频开关电源设计、电力电子电路设计等方面的研究,zdchenyang@163.com。
基金资助:
CHEN Yang1(), WENG Weijie1,2, HUANG Jiangdong1,2, ZOU Tao1, JIANG Wei2,*(
)
Received:
2024-01-21
Revised:
2024-03-21
Published:
2024-04-25
Supported by:
摘要:
随着储能系统电压、功率等级不断提升,串联电池组电池数量增加,电池组之间失衡情况愈加复杂。为此,提出了一种基于变压器的多路径串联电池组直接均衡拓扑结构。该拓扑结构以变压器作为能量转移载体,能够在Buck-Boost和反激模式切换工作,通过控制低导通双向开关阵列,实现任意电池单元之间的均衡。该拓扑结构具有多种均衡模式、灵活的均衡路径和更快的均衡速度。为了实现有效的能量分配,提高均衡效率,设计了一种以荷电状态(SOC)为均衡指标的模糊控制策略。最后,在不同工况下通过一系列仿真试验验证了所提拓扑结构及其控制策略的有效性。结果显示,所提均衡拓扑及控制策略对于改善电池组内单体不一致问题具备良好效能;对于改善电池组单体间容量差异、提高储能系统容量利用率和延长电池组使用寿命等具有重要意义。
中图分类号:
陈洋, 翁伟杰, 黄江东, 邹涛, 姜伟. 一种基于变压器的多路径均衡拓扑结构研究[J]. 综合智慧能源, 2024, 46(4): 68-77.
CHEN Yang, WENG Weijie, HUANG Jiangdong, ZOU Tao, JIANG Wei. Research on multi-path balancing topology based on transformers[J]. Integrated Intelligent Energy, 2024, 46(4): 68-77.
[1] | 李建林, 屈树慷, 黄孟阳, 等. 锂离子电池建模现状研究综述[J]. 热力发电, 2021, 50(7):1-7. |
LI Jianlin, QU Shukang, HUANG Mengyang, et al. A review of the current status of lithium-ion battery modeling[J]. Thermal Power Generation, 2021, 50(7): 1-7. | |
[2] | WANG S C, YANG S Y, YANG W, et al. A new kind of balancing circuit with multiple equalization modes for serially connected battery pack[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2142-2150. |
[3] |
罗玉涛, 吴志强. 基于DAEKF算法的锂离子电池主要状态在线联合估计[J]. 华南理工大学学报(自然科学版), 2023, 51(1):84-94.
doi: 10.12141/j.issn.1000-565X.220050 |
LUO Yutao, WU Zhiqiang. Online joint estimation of main states of lithium-ion battery based on DAEKF algorithm[J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(1): 84-94.
doi: 10.12141/j.issn.1000-565X.220050 |
|
[4] |
WANG Y X, ZHONG H, LI J W, et al. Adaptive estimation-based hierarchical model predictive control methodology for battery active equalization topologies:Part I—Balancing strategy[J]. Journal of Energy Storage, 2022, 45(5): 103235.
doi: 10.1016/j.est.2021.103235 |
[5] |
LIAO L, LI H G, LI H J, et al. Research on equalization scheme of lithium-ion battery packs based on consistency control strategy[J]. Journal of Energy Storage, 2023, 73: 109193.
doi: 10.1016/j.est.2023.109193 |
[6] | 王孝乾. 动力电池组高效均衡系统研究[D]. 济南: 山东大学, 2021. |
WANG Xiaoqian. Research on high efficiency equalization system of power battery pack[D]. Jinan: Shandong University, 2021. | |
[7] |
LIU X T, WAN Z H, HE Y, et al. A unified control strategy for inductor-based active battery equalization schemes[J]. Energies, 2018, 11(2): 405-420.
doi: 10.3390/en11020405 |
[8] | YUAN A, CAI T, XIE J. Inductor multiplexing equalization circuit with fuzzy controller for lithium battery equalization[C]// 2022 IEEE 5th International Electrical and Energy Conference (CIEEC). 2022. |
[9] | 张露. 基于反激式变压器锂电池组双向均衡系统优化分析[D]. 成都: 西南交通大学, 2018. |
ZHANG Lu. Optimization analysis of bi-directional equalization system based on flyback transformer lithium battery pack[D]. Chengdu: Southwest Jiaotong University, 2018. | |
[10] |
LAI X, JIANG C, ZHENG Y J, et al. A novel composite equalizer based on an additional cell for series-connected lithium-ion cells[J]. Electronics, 2018, 7(12): 366-383.
doi: 10.3390/electronics7120366 |
[11] | 徐鹏, 康龙云, 万蕾, 等. 一种均衡阈值可调的双模式电池均衡电路[J]. 电机与控制学报, 2023, 27(10):96-107. |
XU Peng, KANG Longyun, WAN Lei, et al. A dual-mode battery equalization circuit with adjustable balancing threshold[J]. Journal of Electrical Machines and Control, 2023, 27(10): 96-107. | |
[12] |
FENG F, HU X S, LIU J F, et al. A review of equalization strategies for series battery packs:Variables, objectives, and algorithms[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109464.
doi: 10.1016/j.rser.2019.109464 |
[13] |
LI J N, LIU D D, ZHU F, et al. Analysis of equalization technology of series lithium-ion battery pack based on power frequency modulation[J]. Energy Storage Science and Technology, 2019, 8(3): 468-476.
doi: 10.12028/j.issn.2095-4239.2019.0011 |
[14] | 李玉, 徐俊, 彭程, 等. 结合变压器正反激原理的动力电池主动均衡方法[J]. 西安交通大学学报, 2019, 53(8): 151-158. |
LI Yu, XU Jun, PENG Cheng, et al. Active equalisation method of power battery combined with transformer forward-flyback principle[J]. Journal of Xi'an Jiaotong University, 2019, 53(8): 151-158. | |
[15] |
DAS U K, SHRIVASTAVA P, TEY K S, et al. Advancement of lithium-ion battery cells voltage equalization techniques:A review[J]. Renewable and Sustainable Energy Reviews, 2020, 134(12): 110227.
doi: 10.1016/j.rser.2020.110227 |
[16] |
MA Y, DUAN P, SUN Y S, et al. Equalization of lithium-ion battery pack based on fuzzy logic control in electric vehicle[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6762-6771.
doi: 10.1109/TIE.41 |
[17] | PENG D, YAN M, YANG C, et al. Equalization of series connected lithium-ion battery based on state of charge in electric vehicle[C]// 2018 13th World Congress on Intelligent Control and Automation (WCICA). 2018. |
[18] |
WU T Z, JI F, LIAO L, et al. Voltage-SOC balancing control scheme for series-connected lithium-ion battery packs[J]. Journal of Energy Storage, 2019, 25(10): 100895.
doi: 10.1016/j.est.2019.100895 |
[19] |
CHEN H. Research on battery pack dynamic equalization technology with improved flying capacitor[J]. International Journal of Low-carbon Technologies, 2021, 16(1):199-204.
doi: 10.1093/ijlct/ctaa044 |
[20] |
刘春辉, 任宏斌. 基于SOC的动力电池组主动均衡研究[J]. 储能科学与技术, 2022, 11(2): 667-672.
doi: 10.19799/j.cnki.2095-4239.2021.0420 |
LIU Chunhui, REN Hongbin. Research on active balancing of power battery pack based on SOC[J]. Energy Storage Science and Technology, 2022, 11(2): 667-672.
doi: 10.19799/j.cnki.2095-4239.2021.0420 |
|
[21] |
LI Y, XU J, MEI X S, et al. A unitized multiwinding transformer-based equalization method for series-connected battery strings[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 11981-11989.
doi: 10.1109/TPEL.63 |
[22] |
QI X B, WANG Y, FANG M Z. An Integrated cascade structure-based isolated bidirectional DC-DC converter for battery charge equalization[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 12003-12021.
doi: 10.1109/TPEL.63 |
[23] |
NAZI H, BABAEI E, SABAHI M. Bidirectional active charge equaliser for series‐connected cells[J]. IET Power Electronics, 2019, 12(5): 1229-1240.
doi: 10.1049/pel2.v12.5 |
[24] | 刘威, 唐传雨, 王天如, 等. 串联电池组主动均衡拓扑及控制策略研究[J]. 电源学报, 2022, 20(3): 161-169. |
LIU Wei, TANG Chuanyu, WANG Tianru, et al. Research on active equalisation topology and control strategy of series-connected battery pack[J]. Journal of Power Supply, 2022, 20(3): 161-169. | |
[25] |
XIONG H, SONG D W, SHI F D, et al. Novel voltage equalisation circuit of the lithium battery pack based on bidirectional flyback converter[J]. IET Power Electronics, 2020, 13(11): 2194-2200.
doi: 10.1049/pel2.v13.11 |
[26] | 吕康平. 多路径条件下串联储能均衡策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
LV Kangping. Research on equalisation strategy of tandem energy storage under multi-path condition[D]. Harbin: Harbin Institute of Technology, 2020. | |
[27] |
郑真, 朱峰, 马小丽, 等. 基于 TL-LSTM 的新能源功率短期预测[J]. 综合智慧能源, 2023, 45(1):41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005 |
ZHENG Zhen, ZHU Feng, MA Xiaoli, et al. Short-term new energy power prediction based on TL-LSTM[J]. Integrated Intelligent Energy, 2023, 45(1):41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005 |
|
[28] |
高明, 郝妍. 基于 BiLSTM 网络与误差修正的超短期负荷预测[J]. 综合智慧能源, 2023, 45(1):31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004 |
GAO Ming, HAO Yan. Ultra-short-term load forecasting based on BiLSTM network and error correction[J]. Integrated Intelligent Energy, 2023, 45(1):31-40
doi: 10.3969/j.issn.2097-0706.2023.01.004 |
[1] | 孙娜, 董海鹰, 陈薇, 马虎林. 新型电力系统场景下网侧规模化储能二次调频控制策略[J]. 综合智慧能源, 2024, 46(2): 59-67. |
[2] | 汪李忠, 池建飞, 丁叶强, 姚海燕, 唐志鹏, 吴同宇. 基于NNTR-SMOTE与GA-XGBoost的变压器故障诊断方法研究[J]. 综合智慧能源, 2024, 46(1): 84-93. |
[3] | 肖宏磊, 留毅, 夏红军, 缪宇峰, 俞啸玲, 杨海琦. 基于PCA与SSA-LightGBM的油浸式变压器故障诊断方法[J]. 综合智慧能源, 2023, 45(3): 9-16. |
[4] | 龙思成, 黄志鸿. 基于多尺度极限融合网络的电力变压器故障诊断方法研究[J]. 综合智慧能源, 2022, 44(9): 78-83. |
[5] | 马灿洪, 黄峥, 严彦成, 巩琪娟, 黄堃锋. 输入磁滞的非线性系统事件触发有限时间控制[J]. 综合智慧能源, 2022, 44(12): 18-24. |
[6] | 魏佳栋, 许飞, 曹辉, 缪忠杰, 叶长徽, 周念成. 基于物联网的配电变压器智能感知平台及其安全构架[J]. 华电技术, 2021, 43(1): 1-5. |
[7] | 陈清, 郭培育, 周晴, 吴丽华. 集中式光伏发电站设备选型要点[J]. 华电技术, 2020, 42(12): 78-81. |
[8] | 宋宝玉,岳浩. 670MW机组空气预热器漏风控制系统优化[J]. 华电技术, 2019, 41(9): 76-77. |
[9] | 张巍1a,周国鹏1b,汪洋1a,倪浩1a,钟著辉2. 一起220kV主变压器保护装置发TV异常告警的原因分析[J]. 华电技术, 2019, 41(6): 23-26. |
[10] | 王哲,郭晓,行武,胡兵. 变压器过励磁五次谐波特征及机制的研究[J]. 华电技术, 2019, 41(5): 22-27. |
[11] | 崔殿彬. 发变组保护装置界面&通信管理单元的设计与实现[J]. 华电技术, 2019, 41(4): 19-23. |
[12] | 陈建国1,张国民1,马辉1,韩冰2,卓钢1,冯晖1. 光伏电站箱式变压器遮阳棚一体化设计及运行经济性分析[J]. 华电技术, 2019, 41(1): 21-26. |
[13] | 杜喜来. 电流互感器接地点原则及案例分析[J]. 华电技术, 2018, 40(8): 31-33. |
[14] | 李文秀. 600MW机组DEH冗余VP卡升级改造简析[J]. 华电技术, 2018, 40(8): 57-58. |
[15] | 马金平. 变压器油中含气量超标检查与处理[J]. 华电技术, 2018, 40(7): 35-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||