综合智慧能源 ›› 2024, Vol. 46 ›› Issue (4): 60-67.doi: 10.3969/j.issn.2097-0706.2024.04.008
缪月森1(), 夏红军2, 黄宁洁1, 李云1, 周世杰1,*(
)
收稿日期:
2023-10-11
修回日期:
2024-01-02
出版日期:
2024-04-25
通讯作者:
*周世杰(1984),男,工程师,从事电力系统发输变电及供配电等方面的研究,zhousj1232@163.com。作者简介:
缪月森(1981),男,高级工程师,从事新能源发电预测及消纳等方面的研究,miaoyuesen129@sina.com。
基金资助:
MIAO Yuesen1(), XIA Hongjun2, HUANG Ningjie1, LI Yun1, ZHOU Shijie1,*(
)
Received:
2023-10-11
Revised:
2024-01-02
Published:
2024-04-25
Supported by:
摘要:
为了支持可再生能源的布局及装机容量规划,长时间序列的电力负荷和光伏出力系数预测至关重要。光伏出力系数反映了光伏发电系统实际运行中的发电效率,但由于难以准确预测来年的气象信息,每日最大光伏出力系数的预测具有挑战性。为了克服这个限制,提出了利用每7 d计算1次的每日最大光伏出力系数的最大值和最小值构建一个包络线,通过预测该包络线的上限和下限,提供每日最大光伏出力系数可能的区间。这种包络线建模方式有助于在克服气象信息不确定性的同时提供更为鲁棒和可靠的预测结果。选用Informer模型作为预测框架,并与Transformer,LSTM和RNN模型进行了比较。基于实际电力负荷数据序列和光伏出力系数包络线上、下限数据序列进行仿真试验,验证了Informer模型的可行性和良好的预测精度。
中图分类号:
缪月森, 夏红军, 黄宁洁, 李云, 周世杰. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67.
MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer[J]. Integrated Intelligent Energy, 2024, 46(4): 60-67.
[1] | YORO K O, DARAMOLA M O. CO2 emission sources, greenhouse gases, and the global warming effect[M]. Cambridge: Woodhead Publishing, 2020:3-28. |
[2] |
ZOU C N, PAN S Q, HAO Q. On the connotation, challenge and significance of China's "energy independence" strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 449-462.
doi: 10.1016/S1876-3804(20)60062-3 |
[3] | 高世楫, 俞敏. 中国提出“双碳”目标的历史背景、重大意义和变革路径[J]. 新经济导刊, 2021(2):4-8. |
[4] |
PARIDA B, INIYAN S, GOIC R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1625-1636.
doi: 10.1016/j.rser.2010.11.032 |
[5] |
马志程, 李维俊, 周强, 等. 含光热电站的风光联合发电系统互补效益评估[J]. 综合智慧能源, 2023, 45(2): 1-9.
doi: 10.3969/j.issn.2097-0706.2023.02.001 |
MA Zhicheng, LI Weijun, ZHOU Qiang, et al. Evaluation on the complementary benefit of a wind-solar combined power generation system with a photothermal power station[J]. Integrated Intelligent Energy, 2023, 45(2): 1-9.
doi: 10.3969/j.issn.2097-0706.2023.02.001 |
|
[6] | 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4):140-151. |
GONG Yingfei, LU Zongxiang, QIAO Ying, et al. An overview of photovoltaic energy system output forecasting technology[J]. Automation of Electric Power Systems, 2016, 40(4):140-151. | |
[7] | 刘洋, 于海东, 刘文彬, 等. 基于“云边端”协同的分布式光伏柔性调节体系架构[J]. 山东电力技术, 2023, 50(7):23-29. |
LIU Yang, YU Haidong, LIU Wenbin, et al. Architecture of distributed photovoltaic flexible regulation based on cloud-edge-end collaboration[J]. Shandong Electric Power, 2023, 50(7):23-29. | |
[8] | 贺国伟, 肖峻, 曹加胜. 考虑分布式光伏消纳的大型城市配电网规划实践[J]. 供用电, 2021, 38(10):26-34. |
HE Guowei, XIAO Jun, CAO Jiasheng. Planning practice of large urban distribution network considering distributed photovoltaic consumption[J]. Distribution & Utilization, 2021, 38(10):26-34. | |
[9] |
王鑫, 陈祖翠, 卞在平, 等. 基于粒子群优化算法的智慧微电网风光储容量优化配置[J]. 综合智慧能源, 2022, 44(6): 52-58.
doi: 10.3969/j.issn.2097-0706.2022.06.006 |
WANG Xin, CHEN Zucui, BIAN Zaiping, et al. Optimal allocation of a wind-PV-battery hybrid system in smart microgrid based on particle swarm optimization algorithm[J]. Integrated Intelligent Energy, 2022, 44(6): 52-58.
doi: 10.3969/j.issn.2097-0706.2022.06.006 |
|
[10] |
路晓敏, 张明, 邓星, 等. 考虑多重不确定性的多站融合容量优化配置方法[J]. 综合智慧能源, 2022, 44(1):31-38.
doi: 10.3969/j.issn.2097-0706.2022.01.005 |
LU Xiaomin, ZHANG Ming, DENG Xing, et al. Optimal capacity configuration for multi-station integration considering multiple uncertainties[J]. Integrated Intelligent Energy, 2022, 44(1): 31-38.
doi: 10.3969/j.issn.2097-0706.2022.01.005 |
|
[11] |
SANSA I, BOUSSAADA Z, BELLAAJ N M. Solar radiation prediction using a novel hybrid model of ARMA and NARX[J]. Energies, 2021, 14(21): 6920.
doi: 10.3390/en14216920 |
[12] | 林女贵. 基于经验模态分解和 ARIMA 模型的地区售电量预测[J]. 电器与能效管理技术, 2018(7):73-77. |
LIN Nügui. Regional electricity sales forecasting based on empirical mode decomposition and ARIMA model[J]. Electrical & Energy Management Technology, 2018(7):73-77. | |
[13] |
魏妍萍, 王军, 李南帆, 等. 基于Markov链的园区随机功率多场景预测模型[J]. 综合智慧能源, 2023, 45(1): 14-22.
doi: 10.3969/j.issn.2097-0706.2023.01.002 |
WEI Yanping, WANG Jun, LI Nanfan, et al. Prediction model of stochastic power in industrial parks based on Markov chain[J]. Integrated Intelligent Energy, 2023, 45(1): 14-22.
doi: 10.3969/j.issn.2097-0706.2023.01.002 |
|
[14] | 章熙, 郭翔, 万会江, 等. 一种基于BP神经网络的地区用电量预测方法研究[J]. 无线互联科技, 2019, 16(17):114-116. |
ZHANG Xi, GUO Xiang, WAN Huijiang, et al. Study a BP neural network based forecasting method for regional electricity consumption[J]. Wireless Internet Technology, 2019, 16(17):114-116. | |
[15] |
MALVONI M, DE GIORGI M G, CONGEDO P M. Data on Support Vector Machines (SVM) model to forecast photovoltaic power[J]. Data in Brief, 2016, 9: 13-16.
doi: 10.1016/j.dib.2016.08.024 pmid: 27622206 |
[16] | 于秋玲, 许长清, 李珊, 等. 基于模糊聚类和支持向量机的短期光伏功率预测[J]. 电力系统及其自动化学报, 2016, 28(12):115-118. |
YU Qiuling, XU Changqing, LI Shan, et al. Application of fuzzy clustering algorithm and support vector machine to short-term forecasting of PV power[J]. Proceedings of the CSU-EPSA, 2016, 28(12):115-118. | |
[17] |
XIA M, SHAO H D, MA X D, et al. A stacked GRU-RNN-based approach for predicting renewable energy and electricity load for smart grid operation[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 7050-7059.
doi: 10.1109/TII.2021.3056867 |
[18] | 田杨阳, 张小斐, 耿俊成, 等. 基于改进聚类和 LSTM 的居民小区中长期负荷预测[J]. 河南电力, 2020(S2):58-63. |
TIAN Yangyang, ZHANG Xiaofei, GENG Juncheng, et al. Medium- and long-term load forecasting of residential communities based on improved clustering and LSTM[J]. Henan Electric Power, 2020(S2):58-63. | |
[19] |
郑真, 朱峰, 马小丽, 等. 基于TL-LSTM的新能源功率短期预测[J]. 综合智慧能源, 2023, 45(1): 41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005 |
ZHENG Zhen, ZHU Feng, MA Xiaoli, er al. Short-term new energy power prediction based on TL-LSTM[J]. Integrated Intelligent Energy, 2023, 45(1): 41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005 |
|
[20] |
高明, 郝妍. 基于BiLSTM网络与误差修正的超短期负荷预测[J]. 综合智慧能源, 2023, 45(1): 31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004 |
GAO Ming, HAO Yan. Ultra-short-term load forecasting based on BiLSTM network and error correction[J]. Integrated Intelligent Energy, 2023, 45(1): 31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004 |
|
[21] | 王海燕, 刘佳康, 邓亚平. 基于预估-校正综合BP神经网络的短期光伏功率预测[J]. 智慧电力, 2023, 51(3):46-52. |
WANG Haiyan, LIU Jiakang, DENG Yaping. Short-term photovoltaic power forecasting based on predict-correct combination BP neural network[J]. Smart Power, 2023, 51(3):46-52. | |
[22] | 王粟, 隗磊锋, 曾亮. 基于GWO-SVM与随机森林的组合光伏功率预测模型[J]. 昆明理工大学学报(自然科学版), 2021, 46(5):82-88. |
WANG Su, WEI Leifeng, ZENG Liang. A combined model for photovoltaic power forecasting based on GWO-SVM and random forest[J]. Journal of Kunming University of Science and Technology(Natural Science), 2021, 46(5):82-88. | |
[23] | 李昭昱, 艾芊, 张宇帆, 等. 基于attention机制的LSTM神经网络超短期负荷预测方法[J]. 供用电, 2019, 36(1):17-22. |
LI Zhaoyu, AI Qian, ZHANG Yufan, et al. A LSTM neural network method based on attention mechanism for ultra short-term load forecasting[J]. Distribution & Utilization, 2019, 36(1):17-22. | |
[24] | SAJJAD M, KHAN Z A, ULLAH A, et al. A novel CNN-GRU based hybrid approach for short-term residential load forecasting[J]. IEEE Access, 2020,8:143759-143768. |
[25] |
JEBLI I, BELOUADHA F Z, KABBAJ M I, et al. Prediction of solar energy guided by Pearson correlation using machine learning[J]. Energy, 2021, 224: 120109.
doi: 10.1016/j.energy.2021.120109 |
[26] | 陈新和, 宋月新, 张立国, 等. 模型与数据混合驱动的分布式光伏超短期功率预测[J]. 供用电, 2023, 40(1):2-9. |
CHEN Xinhe, SONG Yuexin, ZHANG Liguo, et al. Ultra-short-term power prediction of distributed photovoltaic driven by model and data hybrid[J]. Distribution & Utilization, 2023, 40(1):2-9. | |
[27] | 谢宏文, 查浩, 陈庆文, 等. 一种使用CALSTM模型进行短期光伏功率预测的方法[J]. 供用电, 2020, 37(12):61-66. |
XIE Hongwen, ZHA Hao, CHEN Qingwen, et al. A method for short-term photovoltaic power prediction using CALSTM model[J]. Distribution & Utilization, 2020, 37(12):61-66. | |
[28] | 张磊, 王小明, 吴红斌, 等. 基于FCM和LSTM的光伏功率超短期预测[J]. 供用电, 2023, 40(1):10-17. |
ZHANG Lei, WANG Xiaoming, WU Hongbin, et al. Ultra-short-term prediction of PV power based on FCM and LSTM[J]. Distribution & Utilization, 2023, 40(1):10-17. | |
[29] | 史静, 李琥, 李冰洁, 等. 基于长短期记忆神经网络的配电网负荷预测方法研究[J]. 供用电, 2019, 36(7):71-77,90. |
SHI Jing, LI Hu, LI Bingjie, et al. Distribution network load forecasting based on LSTM neural network[J]. Distribution & Utilization, 2019, 36(7):71-77,90. | |
[30] | 比利时Elia公司运行数据[EB/OL].[2023-10-05]. https://opendata.elia.be/pages/home/. |
[31] | 邱大伟, 刘子辰, 周一青, 等. 基于 Transformer 神经网络的滚动轴承故障类型识别[J]. 高技术通讯, 2021, 31(1):1-11. |
QIU Dawei, LIU Zichen, ZHOU Yiqing, et al. A novel fault type detection method of rolling bearing using Transformer neural networks[J]. Chinese High Technology Letters, 2021, 31(1):1-11. | |
[32] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems, 2017:5998-6008. |
[33] | ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[EB/OL].(2020-12-14)[2023-10-02].https://doi.org/10.48550/arXiv.2012.07436. |
[1] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[2] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
[3] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
[4] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[5] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
[6] | 李益民, 董海鹰, 丁坤, 王金岩. 考虑长期负荷概率预测的储能多阶段优化配置[J]. 综合智慧能源, 2024, 46(2): 19-27. |
[7] | 陆文甜. 基于增量交换的主动配电网分布式多目标最优潮流[J]. 综合智慧能源, 2024, 46(2): 43-48. |
[8] | 孔慧超, 王文钟, 雷一, 彭静, 李海波. 园区受端新型电力系统电力电量再平衡方法[J]. 综合智慧能源, 2024, 46(2): 68-74. |
[9] | 方刚, 王静, 张波波, 王俊哲. 基于Pareto解集的工业园区微网优化配置研究[J]. 综合智慧能源, 2024, 46(1): 49-55. |
[10] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[11] | 杨波, 李成雲, 吕浩轩, 周博文, 李广地, 谷鹏. 基于多STA-GLN集成模型的电力系统暂态稳定评估方法[J]. 综合智慧能源, 2023, 45(7): 48-60. |
[12] | 金立, 张力, 唐杨, 唐侨, 任炬光, 杨焜, 刘小兵. 考虑温湿指数与耦合特征的综合能源负荷短期预测[J]. 综合智慧能源, 2023, 45(7): 70-77. |
[13] | 刘艺娴, 王玉彬, 杨强. 基于门控图神经网络的高容错配电网状态估计方法[J]. 综合智慧能源, 2023, 45(6): 1-8. |
[14] | 窦真兰, 沈建忠, 张春雁, 江晶晶, 陈祺, 陈婧. 考虑供需不确定性的区域综合能源系统时间解耦分层能量管理[J]. 综合智慧能源, 2023, 45(6): 17-24. |
[15] | 韩朝兵, 汤冰, 尹瑞麟, 朱正香, 薛明华, 祝建飞, 艾春美, 孙立. 典型综合能源系统建模及特性仿真研究[J]. 综合智慧能源, 2023, 45(6): 49-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||