综合智慧能源 ›› 2024, Vol. 46 ›› Issue (5): 12-19.doi: 10.3969/j.issn.2097-0706.2024.05.002

• 5G通信环境及数据检测 • 上一篇    下一篇

面向新型电力系统的异常数据检测方法

王亮(), 邓松()   

  1. 南京邮电大学 自动化学院 人工智能学院,南京 210023
  • 收稿日期:2024-04-02 修回日期:2024-04-28 出版日期:2024-05-25
  • 通讯作者: * 邓松(1980),教授,博士,从事电力信息物理系统安全评估,数据安全,大数据分析等方面的研究,dengsong@njupt.edu.cn。
  • 作者简介:王亮(2001),男,硕士生,从事数据安全等方面的研究,liangwang07@126.com
  • 基金资助:
    国家自然科学基金项目(51977113)

Anomalous data detection methods for new power systems

WANG Liang(), DENG Song()   

  1. College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications,Nanjing 210023,China
  • Received:2024-04-02 Revised:2024-04-28 Published:2024-05-25
  • Supported by:
    National Natural Science Foundation of China(51977113)

摘要:

随着新型电力系统的快速发展,电力系统产生的数据数量不断增值、种类也愈发多样。复杂化的数据环境为电力系统异常数据诊断带来了新的挑战。对目前电力系统中常用的异常数据检测方法进行总结,介绍了基于传统技术、机器学习、深度学习的检测方法,并分析了3类算法的检测原理、特点以及不足。最后,对新型电力系统中异常数据检测会遇到的挑战以及发展趋势进行了展望。

关键词: 新型电力系统, 异常数据, 机器学习, 深度学习, 传统技术, 异常检测

Abstract:

With the rapid development of new power systems, massive data with various types are generated from the power systems. The complicated data conditions bring new challenges to anomaly data detection for power systems. In a summary on commonly used methods for anomalous power data in detecting, traditional technology-based, machine learning-based and deep learning-based detection methods are introduces. The working principle, characteristics and shortcomings of the three types of detecting methods are analysed. In the end, the challenges and development trends of anomalous data detection in new power systems are looked forward.

Key words: new power system, abnormal data, machine learning, deep learning traditional technology, anomaly detection

中图分类号: