[1] |
曲正伟, 张嘉曦, 王云静, 等. 考虑分布式电源不确定性的配电网改进仿射状态估计[J]. 电力系统自动化, 2021, 45(23): 104-112.
|
|
QU Zhengwei, ZHANG Jiaxi, WANG Yunjing, et al. Improved affine state estimation for distribution network considering uncertainty of distributed generator[J]. Automation of Electric Power Systems, 2021, 45(23): 104-112.
|
[2] |
晁晨栩, 郑晓冬, 高飘, 等. 含高比例光伏配电网的高频阻抗差动保护[J]. 中国电机工程学报, 2021, 41(20): 6968-6979.
|
|
CHAO Chenxu, ZHENG Xiaodong, GAO Piao, et al. High frequency impedance differential protection with high proportion of photovoltaic power distribution network[J]. Proceedings of the CSEE, 2021, 41(20): 6968-6979.
|
[3] |
CHEN K J, HU J, ZHANG Y, et al. Fault location in power distribution systems via deep graph convolutional networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(1):119-131.
|
[4] |
徐岩, 邹南, 马天祥. 逆变型分布式电源接入配电网单相断线故障零序电压分析[J]. 电力系统保护与控制, 2022, 50(2): 41-51.
|
|
XU Yan, ZOU Nan, MA Tianxiang. Analysis of zero-sequence voltage of a single-phase disconnection fault of inverter interfaced distributed generation connected to a distribution network[J]. Power System Protection and Control, 2022, 50(2): 41-51.
|
[5] |
马喜平, 贾嵘, 梁琛, 等. 高比例新能源接入下电力系统降损研究综述[J]. 电网技术, 2022, 46(11): 4305-4315.
|
|
MA Xiping, JIA Rong, LIANG Chen, et al. Review of research on loss reduction in the context of high penetration of renewable power generation[J]. Power System Technology, 2022, 46(11): 4305-4315.
|
[6] |
XIAO J, ZU G Q, ZHOU H, et al. Total quadrant security region for active distribution network with high penetration of distributed generation[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(1): 128-137.
|
[7] |
SHARMA S, NIAZI K R, VERMA K, et al. Impact of battery energy storage,controllable load and network reconfiguration on contemporary distribution network under uncertain environment[J]. IET Generation, Transmission & Distribution, 2020, 14(21): 4719-4727.
|
[8] |
詹惠瑜, 刘科研, 盛万兴, 等. 有源配电网故障诊断与定位方法综述及展望[J]. 高电压技术, 2023, 49(2): 660-671.
|
|
ZHAN Huiyu, LIU Keyan, SHENG Wanxing, et al. Literature review and prospects of fault diagnosis in active distribution network[J]. High Voltage Engineering, 2023, 49(2): 660-671.
|
[9] |
吉兴全, 张朔, 张玉敏, 等. 基于IELM算法的配电网故障区段定位[J]. 电力系统自动化, 2021, 45(22): 157-166.
|
|
JI Xingquan, ZHANG Shuo, ZHANG Yumin, et al. Fault section location for distribution network based on improved electromagnetism-like mechanism algorithm[J]. Automation of Electric Power Systems, 2021, 45(22): 157-166.
|
[10] |
高锋阳, 曾林, 李昭君, 等. 分布式智能协同和云计算相结合的配电网故障选线新方法[J]. 电网技术, 2021, 45(8): 2969-2978.
|
|
GAO Fengyang, ZENG Lin, LI Zhaojun, et al. A new fault line selection method for distribution network based on distributed intelligent collaboration and cloud computing[J]. Power System Technology, 2021, 45(8): 2969-2978.
|
[11] |
齐郑, 赵昕一, 陈艳波. 暂态与稳态相不对称信号相结合的配电网单相接地故障感知技术[J]. 高电压技术, 2022, 48(4): 1264-1276.
|
|
QI Zheng, ZHAO Xinyi, CHEN Yanbo. Single phase grounding fault sensing technology in distribution network based on transient and steady state phase unsymmetrical signals[J]. High Voltage Engineering, 2022, 48(4): 1264-1276.
|
[12] |
洪翠, 连淑婷, 郭谋发, 等. 经验小波变换在直流配电系统故障检测中的应用[J]. 电机与控制学报, 2021, 25(12): 65-74.
|
|
HONG Cui, LIAN Shuting, GUO Moufa, et al. Application of empirical wavelet transform in fault detection of DC distribution system[J]. Electric Machines and Control, 2021, 25(12): 65-74.
|
[13] |
张晨浩, 李洋, 宋国兵, 等. 基于模型识别的配电网谐波源定位方法[J]. 中国电机工程学报, 2021, 41(17): 5803-5813.
|
|
ZHANG Chenhao, LI Yang, SONG Guobing, et al. Harmonic source location method for distribution networks based on model recognition[J]. Proceedings of the CSEE, 2021, 41(17): 5803-5813.
|
[14] |
束洪春, 龚振, 田鑫萃, 等. 基于故障特征频带及形态谱的单相接地故障选线[J]. 电网技术, 2019, 43(3): 1041-1048.
|
|
SHU Hongchun, GONG Zhen, TIAN Xincui, et al. Single line-to-ground fault line selection based on fault characteristic frequency band and morphological spectrum[J]. Power System Technology, 2019, 43(3): 1041-1048.
|
[15] |
喻锟, 胥鹏博, 曾祥君, 等. 基于模糊测度融合诊断的配电网接地故障选线[J]. 电工技术学报, 2022, 37(3): 623-633.
|
|
YU Kun, XU Pengbo, ZENG Xiangjun, et al. Grounding fault line selection of distribution networks based on fuzzy measures integrated diagnosis[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 623-633.
|
[16] |
和敬涵, 罗国敏, 程梦晓, 等. 新一代人工智能在电力系统故障分析及定位中的研究综述[J]. 中国电机工程学报, 2020, 40(17): 5506-5516.
|
|
HE Jinghan, LUO Guomin, CHENG Mengxiao, et al. A research review on application of artificial intelligence in power system fault analysis and location[J]. Proceedings of the CSEE, 2020, 40(17): 5506-5516.
|
[17] |
LIANG J F, JING T J, NIU H N, et al. Two-terminal fault location method of distribution network based on adaptive convolution neural network[J]. IEEE Access, 2020, 8: 54035-54043.
|
[18] |
刘科研, 董伟杰, 肖仕武, 等. 基于电压数据SVM分类的有源配电网故障判别及定位[J]. 电网技术, 2021, 45(6): 2369-2379.
|
|
LIU Keyan, DONG Weijie, XIAO Shiwu, et al. Fault identification and location of active distribution network based on SVM classification of voltage data[J]. Power System Technology, 2021, 45(6): 2369-2379.
|
[19] |
李佳玮, 王小君, 和敬涵, 等. 基于图注意力网络的配电网故障定位方法[J]. 电网技术, 2021, 45(6): 2113-2121.
|
|
LI Jiawei, WANG Xiaojun, HE Jinghan, et al. Distribution network fault location based on graph attention network[J]. Power System Technology, 2021, 45(6): 2113-2121.
|
[20] |
赵恺, 石立宝. 基于改进一维卷积神经网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45(8): 2945-2957.
|
|
ZHAO Kai, SHI Libao. Transient stability assessment of power system based on improved one-dimensional convolutional neural network[J]. Power System Technology, 2021, 45(8): 2945-2957.
|
[21] |
符金伟, 史常凯, 尹惠, 等. 基于综合特征矩阵的配电网故障判别方法[J]. 中国电力, 2021, 54(11): 125-132.
|
|
FU Jinwei, SHI Changkai, YIN Hui, et al. Distribution network fault type identification method based on feature-summarizing matrix[J]. Electric Power, 2021, 54(11): 125-132.
|
[22] |
徐艳春, 赵彩彩, 孙思涵, 等. 基于改进LMD和能量相对熵的主动配电网故障定位方法[J]. 中国电力, 2021, 54(11): 133-143.
|
|
XU Yanchun, ZHAO Caicai, SUN Sihan, et al. Fault location for active distribution network based on improved LMD and energy relative entropy[J]. Electric Power, 2021, 54(11): 133-143.
|
[23] |
ZENG X, GAO W, YANG G. High impedance fault detection in distribution network based on S-transform and average singular entropy[J]. Global Energy Interconnection, 2023, 6(1): 64-80.
|
[24] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 770-778.
|
[25] |
马鑫, 尚毅梓, 胡昊, 等. 基于数据特征增强和残差收缩网络的变压器故障识别方法[J]. 电力系统自动化, 2022, 46(3): 175-183.
|
|
MA Xin, SHANG Yizi, HU Hao, et al. Identification method of transformer fault based on data feature enhancement and residual shrinkage network[J]. Automation of Electric Power Systems, 2022, 46(3): 175-183.
|