综合智慧能源 ›› 2025, Vol. 47 ›› Issue (8): 10-20.doi: 10.3969/j.issn.2097-0706.2025.08.002

• 多维储能技术 • 上一篇    下一篇

基于电热耦合模型的锂离子电池故障诊断技术

喻子逸1(), 潘庭龙1,*(), 葛科2(), 窦真兰3(), 许德智4()   

  1. 1.江南大学 物联网工程学院, 江苏 无锡 214122
    2.江苏海基新能源股份有限公司, 江苏 无锡 214422
    3.国网上海市电力公司, 上海 200122
    4.东南大学 电气工程学院, 南京 210018
  • 收稿日期:2024-09-19 修回日期:2024-10-21 出版日期:2025-06-03
  • 通讯作者: *潘庭龙(1976),男,教授,博士生导师,博士,从事微电网控制技术、功率变换技术及应用和电气传动系统及其先进控制技术等方面的研究,tlpan@jiangnan.edu.cn
  • 作者简介:喻子逸(2000),男,硕士生,从事锂离子电池故障诊断方面的研究,6221915027@stu.jiangnan.edu.cn
    葛科(1983),男,高级工程师,硕士,从事动力及储能电芯研发、设计、生产等方面的研究,geke123@163.com
    窦真兰(1980),女,高级工程师,博士,从事综合能源系统、能源互联网、风力发电、氢能、储能、微网技术等方面的研究,douzhl@126.com
    许德智(1985),男,教授,博士生导师,博士,从事储能系统、运动体与电机控制和故障诊断与容错等方面的研究,xudezhi@seu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62222307)

Fault diagnosis technology for lithium-ion batteries based on electro-thermal coupling model

YU Ziyi1(), PAN Tinglong1,*(), GE Ke2(), DOU Zhenlan3(), XU Dezhi4()   

  1. 1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
    2. Jiangsu Haiji New Energy Company Limited, Wuxi 214422, China
    3. State Grid Shanghai Power Supply Company, Shanghai 200122, China
    4. School of Electrical Engineering, Southeast University, Nanjing 210018, China
  • Received:2024-09-19 Revised:2024-10-21 Published:2025-06-03
  • Supported by:
    National Natural Science Foundation of China(62222307)

摘要:

随着新能源汽车的快速发展,锂离子电池作为动力电池的核心组成部分,其安全性至关重要。基于此背景,提出了一种基于电热耦合模型的锂离子电池故障诊断技术。将锂离子电池的电学与热学特性相结合,建立电热耦合模型,该模型的电压与表面温度的相对误差均小于1%,能更精确地描述电池的性能表现。该模型将二阶Thevenin等效电路模型与集总参数热模型相结合,能够动态反映电流、电压对温度的影响,同时也考虑了温度对电气参数的反向影响。通过含有遗忘因子的递推最小二乘法对模型参数进行辨识,并采用自适应扩展卡尔曼滤波器(AEKF)进行状态估计,再利用测量值与估计值的差异实现对电池故障的精确诊断。试验表明,该技术能够在不同故障条件下对电池的状态进行监测,通过电压和温度的联合监控,成功实现了故障的识别与诊断。

关键词: 锂离子电池, 电热耦合模型, 参数辨识, 状态估计, 故障诊断

Abstract:

With the rapid development of new energy vehicles, the safety of lithium-ion batteries, a core component of power batteries, has become increasingly crucial. Therefore, a fault diagnosis technology for lithium-ion batteries based on an electro-thermal coupling model was proposed. By integrating the electrical and thermal characteristics of lithium-ion batteries, an electro-thermal coupling model was established. The relative errors of the voltage and surface temperature predicted by the model were both less than 1%, providing a more accurate description of battery performance. The model combined a second-order Thevenin equivalent circuit model with a lumped parameter thermal model, dynamically reflecting the influence of current and voltage on temperature while accounting for the feedback effects of temperature on electrical parameters. The model parameters were identified using the Forgetting Factor Recursive Least Squares (FFRLS) algorithm, and state estimation was conducted with an Adaptive Extended Kalman Filter (AEKF). The differences between measured and estimated values enabled accurate fault diagnosis of the batteries. Simulation results demonstrated that the proposed method successfully monitored battery states under various fault conditions and identified and diagnosed faults through combined voltage and temperature monitoring.

Key words: lithium-ion battery, electro-thermal coupling model, parameter identification, state estimation, fault diagnosis

中图分类号: