华电技术 ›› 2020, Vol. 42 ›› Issue (12): 1-6.

• 节能与环保 •    下一篇

基于BP神经网络的300 MW循环流化床机组出力预测

  

  1. 1.内蒙古电力(集团)有限责任公司 内蒙古电力科学研究院分公司,呼和浩特 010020;2.东南大学 能源热转换及其过程测控教育部重点实验室,南京 210096
  • 出版日期:2020-12-25 发布日期:2021-01-04

Performance prediction on a 300 MW CFB based on BP neural network

  1. 1.Inner Mongolia Electric Power Research Institute,Inner Mongolia Electric Power (Group) Company Limited,
    Hohhot 010020,China;2.Key Laboratory of Energy Thermal Conversion and Control,Ministry of Education,
    Southeast University,Nanjing 210096,China
  • Online:2020-12-25 Published:2021-01-04

摘要: 随着机器学习的发展,神经网络技术为燃煤电站中海量数据的分析与预测提供了一种解决手段。为方便电网更好地进行电力资源的调度,机组出力预测至关重要。通过BP神经网络对某300 MW循环流化床机组进行建模,并通过数据预处理减少异常数据对模型精确度的影响,通过主成分分析法(PCA)降维减少输入变量个数。试验对比分析了不同隐层神经元数量下输出值与期望值的相对误差及均方根误差,表明选用7个隐层神经元综合结果较优。以该机组存储的相关数据为例进行试验,结果表明模型测试得到的输出值与期望值的相对误差约为±2 %,均方根误差约为13.4 MW。因此,本模型用于对机组出力进行预测具有较好的精确性与稳定性。

关键词: BP神经网络, 机组出力, 预测模型, 相对误差, 机器学习

Abstract:

With the development of machine learning neural network technology has become a solution to making analysis and prediction on massive data in coal-fired power plants. To facilitate the dispatching of power resources in power grid it is key to predicting power unit output. Having modeled a 300 MW CFB based on BP neural network the impact of abnormal data on the model accuracy was alleviated through data preprocessing and the number of input variables in principal component analysisPCA was reduced through dimension reduction. Relative error and root-mean- square error between the output value and expected value under different numbers of hidden neurons were compared and analyzed in an experiment and seven hidden neurons were selected for their comprehensive advantages. Studying the corresponding data of the unit in the experiment the results show that the relative error between the output value and the expected value obtained by the model is around ±2% and the root-mean-square error is around 13.4 MW. Therefore this model has good accuracy and stability in power unit prediction.

Key words: BP neural network, power unit output, prediction model, relative error, machine learning