综合智慧能源 ›› 2023, Vol. 45 ›› Issue (1): 14-22.doi: 10.3969/j.issn.2097-0706.2023.01.002

• 电力系统规划 • 上一篇    下一篇

基于Markov链的园区随机功率多场景预测模型

魏妍萍1(), 王军1, 李南帆1, 师长立2,*()   

  1. 1.国网北京城区供电公司,北京 100031
    2.中国科学院电工研究所,北京 100190
  • 收稿日期:2022-10-20 修回日期:2023-01-05 出版日期:2023-01-25
  • 通讯作者: *师长立(1984),男,高级工程师,博士,从事储能关键技术及装备等方面的工作,shichangli@mail.iee.ac.cn
  • 作者简介:魏妍萍(1974),女,高级工程师,硕士,从事微网、储能关键技术及装备等方面的工作,wyp0012021@163.com
  • 基金资助:
    国网北京市电力公司科技项目(52020220004B)

Prediction model of stochastic power in industrial parks based on Markov chain

WEI Yanping1(), WANG Jun1, LI Nanfan1, SHI Changli2,*()   

  1. 1. State Grid Beijing Chengqu Power Supply Company,Beijing 100031,China
    2. Institute of Engineering Chinese Academy of Sciences,Beijing 100190,China
  • Received:2022-10-20 Revised:2023-01-05 Published:2023-01-25
  • Supported by:
    Science and Technology Project of State Grid Beijing Electric Power Company(52020220004B)

摘要:

为了促进园区分布式能源的消纳,针对园区随机功率的预测问题提出了一种基于马尔科夫(Markov)链的随机功率多场景预测模型。首先,针对园区新能源及负荷的随机特征,分别采用差分自回归移动平均(ARIMA)模型及Markov链对其建模;其次,针对园区负荷随生产、季节等因素周期性波动的特点,采用后验信息自适应调整Markov概率矩阵以提高其预测精度;然后,为了提高预测时域内多步预测的精度,考虑多步预测场景及其概率提出了一种基于场景树的多场景预测模型,以便更有效地利用Markov概率矩阵;最后,由园区历史功率数据进行了算例分析。结果表明,相比未调整的Markov模型,当自适应调整时间为7 d时,负荷功率的预测误差最低,为0.034 5(标幺值)。相比于常用的极大似然估计法,所提多场景预测模型误差的加权平均值更低。

关键词: 新能源消纳, Markov链, 预测模型, 自适应调整, 分布式能源

Abstract:

To promote the consumption of distributed energy in industrial parks, a multi-scenario prediction model based on Markov chain is proposed for stochastic power prediction. Firstly, ARIMA model and Markov chain are respectively used to build the load model of a park according to the random characteristics of renewable energy and the load. Then, posterior information is used to adjust the Markov probability matrix adaptively to improve its prediction accuracy which is affected by the periodical fluctuation of load varying with production,season or other factors. To improve the accuracy of multi-step prediction in a prediction horizon,a multi-scenario prediction model based on scenario tree is proposed, considering the multi-step prediction scenarios and their probabilities. The model can make more effective use of Markov probability matrix. Finally,a case study is implemented based on historical power data of an industrial park. The results show that compared with the unadjusted Markov model, the adaptive model is of a lower load prediction error,and the prediction error of the one with 7-day adjustment time is as low as 0.034 5 p.u. Compared with the commonly used Maximum Likelihood Estimation,the proposed multi-scenario prediction model is of a lower weighted average error.

Key words: renewable energy consumption, Markov chain, prediction model, adaptive adjustment, distributed energy

中图分类号: