华电技术

• •    

基于金属氧化物的两步法太阳能热化学循环制燃料研究现状与展望

马天增,付铭凯,任婷,李鑫   

  1. 中国科学院电工研究所
  • 收稿日期:2021-07-19 修回日期:2021-07-30 发布日期:2021-08-16
  • 通讯作者: 李鑫
  • 基金资助:
    国家自然科学基金

A review and prospects of two-step solar thermochemical cycle to produce solar fuels based on metal oxides

Tianzeng Ma,Mingkai FU,Ting REN,Xin LI   

  1. Institute of Electrical Engineering, Chinese Academy of Sciences
  • Received:2021-07-19 Revised:2021-07-30 Published:2021-08-16
  • Contact: Xin LI

摘要: 基于金属氧化物的两步法太阳能热化学循环可以生产清洁的太阳能燃料,该方法有望成为实现碳中和的有效途径。两步法太阳能热化学循环具有理论效率高/二氧化碳零排放等优点备受关注。然而,现如今太阳能到化学能的能源转化效率并不高。本文从材料基对、反应器设计、系统优化等方面入手,着重分析了影响太阳能到化学能能源转化效率的因素。其中材料基对研究方面着重总结了其发展历程,指出了DFT和机器学习方法在材料基对筛选方面的重要作用。反应器优化方面着重结合材料特性分析了泡沫陶瓷/蜂窝结构反应器、粒子反应器和膜反应器所适用范围和存在的优缺点。更优的孔隙率和合适的粒子半径可以加快材料基对的升温速率,并且可以有效减少热损失。同时,大规模可连续式设计也可以实现对太阳能的高效利用。系统优化方面,综合分析了数字孪生等新技术在多能互补系统等方面发挥的作用。本文从以上三个方面出发综述了高温太阳能热化学循环制燃料技术的研究进展,并为该领域今后的研究提出了建议。

关键词: 太阳能, 热化学, 材料基对, 反应器, 系统

Abstract: The two-step solar thermochemical cycle based on metal oxides could produce clean solar fuels, and this method is expected to become an effective way to achieve carbon neutrality. The two-step solar thermochemical cycle has the advantages of high theoretical efficiency and no CO2 emissions, and it has attracted much attention. However, the energy conversion efficiency from solar energy to chemical energy is unsatisfactory today. This article starts from the aspects of oxide pairs, reactor design, system optimization, etc., and focuses on the analysis of the factors that affect the conversion efficiency of solar energy to chemical energy. In terms of materials, we focus on summarizing the development history of oxide pairs, and pointing out the importance of DFT and machine learning methods in oxide pairs screening. In the aspect of reactor optimization, the application scope and the existing advantages and disadvantages of particle reactors, foam ceramic/honeycomb structure reactors and membrane reactors are analyzed by combining material characteristics. Better porosity and proper particle radius can speed up the heating rate of the metal oxide base pair, and can effectively reduce heat loss. At the same time, large-scale continuous design can also achieve efficient use of solar energy. In terms of system optimization, the role of new technologies such as digital twins in multi-energy complementary systems is comprehensively analyzed. This article reviews the technology of high-temperature solar thermal chemical cycle to produce solar fuels, and put forward suggestions for future in this field.

Key words: solar energy, thermochemistry, oxide pairs, reactor, system