[1] |
李德波, 王明传, 杨新生, 等. Coats-Redfern模型和DAEM在污泥与煤掺烧过程中的动力学适应性分析[J]. 广东电力, 2019, 32(11):70-77.
|
|
LI Debo, WANG Mingchuan, YANG Xinsheng, et al. Analysis on kinetic adaptability of Coast-Redfern model and DAEM in blending combustion of sludgeand coal[J]. Guangdong Electric Power, 2019, 32(11):70-77.
|
[2] |
CHEN T, LEI C, YAN B, et al. Analysis of heavy metals fixation and associated energy consumption during sewage sludge combustion:Bench scale and pilot test[J]. Journal of Cleaner Production, 2019,229:1243-1250.
|
[3] |
LIANG Y, XU D H, FENG P, et al. Municipal sewage sludge incineration and its air pollution control[J]. Journal of Cleaner Production, 2021, 295(3):126456.
|
[4] |
WANG Y G, LIU Y, YANG W J, et al. Evaluation of combustion properties and pollutant emission characteristics of blends of sewage sludge and biomass[J]. Science of the Total Environment, 2020,720:137365.
|
[5] |
MA M Y, LIANG Y, XU D H, et al. Gas emission characteristics of sewage sludge co-combustion with coal:Effect of oxygen atmosphere and feedstock mixing ratio[J]. Fuel, 2022, 322(12):124102.
|
[6] |
ZHAO R D, QIN J G, CHEN T J, et al. Experimental study on co-combustion of low rank coal semicoke and oil sludge by TG-FTIR[J]. Waste Management, 2020,116:91-99.
|
[7] |
VESILIND P A, RAMSEY T B. Effect of drying temperature on the fuel value of wastewater sludge[J]. Waste Management & Research, 1996, 14(2):189-196.
|
[8] |
OGADA T, WERTHER J. Combustion characteristics of wet sludge in a fluidized bed:Release and combustion of the volatiles[J]. Fuel, 1996, 75(5):617-626.
|
[9] |
LIU Y Q, CHENG L M, ZHAO Y G, et al. Transformation behavior of alkali metals in high-alkali coals[J]. Fuel Processing Technology, 2018,169:288-294.
|
[10] |
曾宪鹏, 于敦喜, 于戈, 等. 准东煤燃烧中不同形态无机元素向颗粒物的转化行为[J]. 煤炭学报, 2019, 44(2):588-595.
|
|
ZENG Xianpeng, YU Dunxi, YU Ge, et al. Transformation of inorganic elements in different forms into ash particles during Zhundong coal combustion[J]. Journal of China Coal Society, 2019, 44(2):588-595.
|
[11] |
蒲旸, 刘洋, 傅培舫, 等. 基于火焰光谱的准东煤旋风燃烧过程中碱金属检测[J]. 洁净煤技术, 2022, 28(7): 81-87.
|
|
PU Yang, LIU Yang, FU Peifang, et al. Research on alkali metal measurement during the cyclone combustion process of Zhundong coal based on flame spectrum[J]. Clean Coal Technology, 2022, 28(7):81-87.
|
[12] |
WEI J J, WANG M, XU D L, et al. Migration and transformation of alkali/alkaline earth metal species during biomass and coal co-gasification:A review[J]. Fuel Processing Technology, 2022, 235(11):107376
|
[13] |
WAN K D, XIA J, VERVISCH L, et al. Modelling alkali metal emissions in large-eddy simulation of a preheated pulverised-coal turbulent jet flame using tabulated chemistry[J]. Combustion Theory and Modelling, 2018, 22(2):203-236.
|
[14] |
WANG C A, TANG G T, SUN R J, et al. The correlations of chemical property,alkali metal distribution,and fouling evaluation of Zhundong coal[J]. Journal of the Energy Institute, 2020, 93(6):2204-2214.
|
[15] |
陈红, 周安鹂, 耿向瑾, 等. W火焰锅炉低负荷条件下掺烧煤泥的数值模拟[J]. 广东电力, 2018, 31(3):15-20.
|
|
CHEN Hong, ZHOU Anli, GENG Xiangjin, et al. Numerical simulation on burning blended coal slime under the condition of low load in W-flame boiler[J]. Guangdong Electric Power, 2018, 31(3):15-20.
|
[16] |
KUANG Y H, HE B S, WANG C J, et al. Numerical analyses of MILD and conventional combustions with the eddy dissipation concept (EDC)[J]. Energy, 2021,237:121622.
|
[17] |
LIU Y Z, WANG Z H, WAN K D, et al. In situ measurements of the release characteristics and catalytic effects of different chemical forms of sodium during combustion of Zhundong coal[J]. Energy & Fuels, 2018, 32(6):6595-6602.
|
[18] |
YU S H, ZHANG C, ZHANG X P, et al. Release and transformation characteristics of Na/Ca/S compounds of Zhundong coal during combustion/CO2 gasification[J]. Journal of the Energy Institute, 2020, 93(2):752-765.
|
[19] |
吕俊复, 史航, 吴玉新, 等. 燃用准东煤过程中碱/碱土金属迁移规律及锅炉结渣沾污研究进展[J]. 煤炭学报, 2020, 45(1):377-385.
|
|
LÜ Junfu, SHI Hang, WU Yuxin, et al. Transformation of AAEM and ash deposition characteristics during combustion of Zhundong coal[J]. Journal of China Coal Society, 2020, 45(1):377-385.
|
[20] |
郭啸峰, 魏小林, 李森. C/H/O/N/S/Cl/K/Na元素的详细化学反应机理的简化与验证[J]. 燃烧科学与技术, 2013, 19(1):21-30.
|
|
GUO Xiaofeng, WEI Xiaolin, LI Sen. Reduction and verification of detailed reaction mechanism containing C/H/O/N/S/Cl/K/Na elements[J]. Journal of Combustion Science and Technology, 2013, 19(1):21-30.
|
[21] |
江锋浩, 张守玉, 黄小河, 等. 高碱煤燃烧过程中结渣机理研究进展[J]. 煤炭转化, 2018, 41(2):1-8.
|
|
JIANG Fenghao, ZHANG Shouyu, HUANG Xiaohe, et al. Research progress on slagging mechanism during high alkali coal combustion process[J]. Coal Conversion, 2018, 41(2):1-8.
|
[22] |
GLARBORG P, MARSHALL P. Mechanism and modeling of the formation of gaseous alkali sulfates[J]. Combustion and Flame, 2005, 141(1-2):22-39.
|
[23] |
季杰强. 高碱煤燃烧碱金属钠迁移特性研究[D]. 杭州: 浙江大学, 2019.
|
|
JI Jieqiang. Migration characteristic of alkali metal sodium during high-alkali coal combustion[D]. Hangzhou: Zhejiang University, 2019.
|
[24] |
DAYTON D C, BELLE-OUDRY D, NORDIN A. Effect of coal minerals on chlorine and alkali metals released during biomass/coal cofiring[J]. Energy & Fuels, 1999, 13(6):1203-1211.
|