综合智慧能源 ›› 2024, Vol. 46 ›› Issue (11): 54-64.doi: 10.3969/j.issn.2097-0706.2024.11.007
吕永升1,2(), 张啸宇1,2,*(
), 王榕夕3, 郭佩乾4
收稿日期:
2024-06-17
修回日期:
2024-08-09
出版日期:
2024-11-25
通讯作者:
* 张啸宇(1993),男,助理教授,博士,从事智能电网与综合能源智能决策、智能电网数据的信息与隐私安全等方面的研究,zhangxiaoyu@ahu.edu.cn。作者简介:
吕永升(2001),男,科研助理,硕士,从事联邦学习研究,372316825@qq.com。
基金资助:
LYU Yongsheng1,2(), ZHANG Xiaoyu1,2,*(
), WANG Xirong3, GUO Peiqian4
Received:
2024-06-17
Revised:
2024-08-09
Published:
2024-11-25
Supported by:
摘要:
新型电力系统的核心目标是实现清洁、低碳、安全、灵活和高效的电力供应,同时是推动“双碳”目标的关键举措。然而,面对新能源的广泛接入、人工智能技术的深度融合以及智能电网和电动汽车等分布式能源的快速发展,传统的集中式数据处理模式在确保数据隐私和实现智能化管理方面显得力不从心。联邦学习(FL)作为一种创新的分布式机器学习技术,以其在数据隐私保护和智能化方面的潜力,为新型电力系统智能化管理、数据隐私保护和效率优化提供了新的解决方案。系统回顾了FL在新型电力系统中的应用,介绍了FL的基本原理和主要算法。重点探讨了FL在隐私保护下的负荷预测与异常数据检测、分布式电源控制与能源管理等方面的应用实例,分析了当前面临的技术挑战。最后,对FL在新型电力系统中的应用前景进行了展望。
中图分类号:
吕永升, 张啸宇, 王榕夕, 郭佩乾. 联邦学习在新型电力系统中的应用与展望[J]. 综合智慧能源, 2024, 46(11): 54-64.
LYU Yongsheng, ZHANG Xiaoyu, WANG Xirong, GUO Peiqian. Application and prospect of federated learning in new power systems[J]. Integrated Intelligent Energy, 2024, 46(11): 54-64.
[1] | IPCC. Synthesis report:Contribution of working groups Ⅰ, Ⅱ and Ⅲ to the sixth assessment report of the intergovernmental panel on climate change[R]. IPCC, 2023. |
[2] | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8):2806-2819. |
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819. | |
[3] |
惠红勋, 漆淘懿, 孙雨乐, 等. 路网耦合下计及电动汽车V2G潜力的充电站选址定容研究[J]. 综合智慧能源, 2024, 46(1):1-10.
doi: 10.3969/j.issn.2097-0706.2024.01.001 |
HUI Hongxun, QI Taoyi, SUN Yule, et al. Siting and sizing of electric vehicle charging stations under the coupling of transport and power networks considering V2G potential[J]. Integrated Intelligent Energy, 2024, 46(1):1-10.
doi: 10.3969/j.issn.2097-0706.2024.01.001 |
|
[4] | 龚钢军, 刘雪松, 王浩淼, 等. 电力数据共享安全防护与隐私保护综述[J]. 综合智慧能源, 2024, 46(5): 30-40. |
GONG Gangjun, LIU Xuesong, WANG Haomiao, et al. Research on security and privacy protection of electric power data sharing[J]. Integrated Intelligent Energy, 2024, 46(5):30-40.
doi: 10.3969/j.issn.2097-0706.2024.05.004 |
|
[5] | KONEČNÝ J, MCMAHAN H B, YU F X, et al. Federated learning: Strategies for improving communication efficiency[J]. arXiv preprint arXiv, 2016:1610.05492. |
[6] | YANG T, ANDREW G, EICHNER H, et al. Applied federated learning: Improving google keyboard query suggestions[J]. arXiv preprint arXiv, 2018:1812.02903. |
[7] | 周传鑫, 孙奕, 汪德刚, 等. 联邦学习研究综述[J]. 网络与信息安全学报, 2021, 7(5):77-92. |
ZHOU Chuanxin, SUN Yi, WANG Degang, et al. Survey of federated learning research[J]. Chinese Journal of Network and Information Security, 2021, 7(5):77-92. | |
[8] | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS). JMLR: W&CP, 2017. |
[9] | YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1-19. |
[10] | IEEE guide for architectural framework and application of federated machine learning: IEEE 3652.1—2020[S]. |
[11] | LIU Y, KANG Y, XING C P, et al. A secure federated transfer learning framework[J]. IEEE Intelligent Systems, 2020, 35(4):70-82. |
[12] | QI J J, ZHOU Q H, LEI L, et al. Federated reinforcement learning: Techniques, applications, and open challenges[J]. arXiv preprint arXiv, 2021:2108.11887. |
[13] | BRIGGS C, FAN Z, ANDRAS P. Federated learning for short-term residential load forecasting[J]. IEEE Open Access Journal of Power and Energy, 2022(9): 573-583. |
[14] | 焦润海, 褚佳杰, 李俊良, 等. 基于数据分解的多区域个性化联邦负荷预测方法[J/OL]. 中国电机工程学报: 1-13(2024-02-01)[2024-07-21]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240131.1525.007.html. |
JIAO Runhai, CHU Jiajie, LI Junliang, et al. Personalized federated multi-region load forecasting method based on data decomposition[J/OL]. Proceedings of the CSEE:1-13(2024-02-01)[2024-07-21]. . | |
[15] | QIN D A W, WEN C X, CHEN Q S, et al. Personalized federated DARTS for electricity load forecasting of individual buildings[J]. IEEE Transactions on Smart Grid, 2023, 14:4888-4901. |
[16] | WANG Y, GAO N, HUG G. Personalized federated learning for individual consumer load forecasting[J]. CSEE Journal of Power and Energy Systems, 2022, 9(1): 326-330. |
[17] | HUSNOO M A, ANWAR A, HOSSEINZADEH N, et al. A secure federated learning framework for residential short term load forecasting[J]. IEEE Transactions on Smart Grid, 2024, 15(2):2044-2055. |
[18] | ZHANG X Y, CÓRDOBA-PACHÓN J R, GUO P, et al. Privacy-preserving federated learning for value-added service model in advanced metering infrastructure[J]. IEEE Transactions on Computational Social Systems, 2024, 11(1):117-131. |
[19] | WANG Y, BENNANI I L, LIU X F, et al. Electricity consumer characteristics identification:A federated learning approach[J]. IEEE Transactions on Smart Grid, 2021, 12(4):3637-3647. |
[20] | LIN J, MA J, ZHU J G. Privacy-preserving household characteristic identification with federated learning method[J]. IEEE Transactions on Smart Grid, 2021, 13(2): 1088-1099. |
[21] | WANG Y, JIA M S, GAO N, et al. Federated clustering for electricity consumption pattern extraction[J] IEEE Transactions on Smart Grid, 2022, 13(3):2425-2439. |
[22] | WEN M, XIE R, LU K, et al. Feddetect: A novel privacy-preserving federated learning framework for energy theft detection in smart grid[J]. IEEE Internet of Things Journal, 2021, 9(8):6069-6080. |
[23] | XIE R. An energy theft detection framework with privacy protection for smart grid[C]// International Joint Conference on Neural Networks. IJCNN, 2023: 1-7. |
[24] | LI X, WANG N Y, ZHU L H, et al. FUSE: A federated learning and U-shape split learning-based electricity theft detection framework[J]. Science China Information Sciences, 2024, 67(4):149302. |
[25] | WANG J, SI Y F, ZHU Y H, et al. Cyber attack detection for electricity theft in smart grids via stacking ensemble GRU optimization algorithm using federated learning framework[J]. International Journal of Electrical Power & Energy Systems, 2024, 157: 109848. |
[26] | JITHISH J, ALANGOT B, MAHALINGAM N, et al. Distributed anomaly detection in smart grids: a federated learning-based approach[J]. IEEE Access, 2023, 11:7157-7179. |
[27] | BONDOK A H, MAHMOUD M, BADR M M, et al. Novel evasion attacks against adversarial training defense for smart grid federated learning[J]. IEEE Access, 2023, 11: 112953-112972. |
[28] | WANG X Y, XIE H P, TANG L F, et al. Decentralized Privacy-preserving electricity theft detection for distribution system operators[J]. IEEE Transactions on Smart Grid, 2024, 15(2): 2179-2190. |
[29] | LI Y, WEI X H, LI Y Z, et al. Detection of false data injection attacks in smart grid: A secure federated deep learning approach[J]. IEEE Transactions on Smart Grid, 2022, 13(6): 4862-4872. |
[30] | IBRAHEM M I, MAHMOUD M, FOUDA M M, et al. Privacy-preserving and efficient decentralized federated learning-based energy theft detector[C]// Proceedings of the IEEE Global Communications Conference. GlobeCOM, 2022 :287-292. |
[31] | WU L Q, SHI H Y, FU S J, et al. p2Detect: Electricity theft detection with privacy preservation for both data and model in smart grid[J]. IEEE Transactions on Smart Grid, 2022, 14(3): 2301-2312. |
[32] | 蒲天骄, 杜帅, 李烨, 等. 面向隐私保护基于联邦强化学习的分布式电源协同优化策略[J]. 电力系统自动化, 2023, 47(8): 62-70. |
PU Tianjiao, DU Shuai, LI Ye, et al. Collaborative optimization strategy of distributed generators based on federated reinforcement learning for privacy preservation[J]. Automation of Electric Power Systems, 2023, 47(8): 62-70. | |
[33] | 周毅斌, 肖浩, 裴玮, 等. 基于纵向联邦学习的微电网群协同优化运行与策略进化[J]. 电力系统自动化, 2023, 47(11):121-132. |
ZHOU Yibin, XIAO Hao, PEI Wei, et al. Collaborative optimization operation and strategy evolution of microgrid cluster based on vertical federated learning[J]. Automation of Electric Power Systems, 2023, 47(11):121-132. | |
[34] | 黎海涛, 刘伊然, 杨艳红, 等. 基于改进联邦竞争深度Q网络的多微网能量管理策略[J]. 电力系统自动化, 2024, 48(8):174-184. |
LI Haitao, LI Yiran, YANG Yanhong, et al. Energy management strategy for multi-microgrid based on improved federated dueling deep Q network[J]. Automation of Electric Power Systems, 2024, 48(8):174-184. | |
[35] | VEERASAMY V, SAMPATH L P M I, SINGH S, et al. Blockchain-based decentralized frequency control of microgrids using federated learning fractional-order recurrent neural network[J]. IEEE Transactions on Smart Grid, 2023, 15(1): 1089-1102. |
[36] | 孙智卿, 陈益芳, 樊立波, 等. 基于联邦强化学习的综合能源系统优化调度方法及系统:202311412348[P] [2024-07-17]. |
[37] |
李彬, 白雪峰, 李志超, 等. 基于联邦学习的分布式电采暖互动模式设计与展望[J]. 综合智慧能源, 2024, 46(1):56-64.
doi: 10.3969/j.issn.2097-0706.2024.01.007 |
LI Bin, BAI Xuefeng, LI Zhichao, et al. Design and prospect of distributed electric heating interactive mode based on federated learning[J]. Integrated Intelligent Energy, 2024, 46(1):56-64.
doi: 10.3969/j.issn.2097-0706.2024.01.007 |
|
[38] | BALINT A, RAJA H, DRIESEN J, et al. Using domain-augmented federated learning to model thermostatically controlled loads[J]. IEEE Transactions on Smart Grid, 2023, 14(5):4116-4124. |
[39] | LEE S, CHOI D H. Federated reinforcement learning for energy management of multiple smart homes with distributed energy resources[J]. IEEE Transactions on Industrial Informatics, 2020, 18(1): 488-497. |
[40] | TOUBEAU J F, TENG F, MORSTYN T, et al. Privacy-preserving probabilistic voltage forecasting in local energy communities[J]. IEEE Transactions on Smart Grid, 2022, 14(1):798-809. |
[41] | LIN J, MA J, ZHU J G. A privacy-preserving federated learning method for probabilistic community-level behind-the-meter solar generation disaggregation[J]. IEEE Transactions on Smart Grid, 2021, 13(1):268-279. |
[42] |
瞿祥谋, 吴映波, 蒋晓玲. 一种非独立同分布问题下的联邦数据增强算法[J]. 计算机科学, 2022, 49(12):33-39.
doi: 10.11896/jsjkx.220300031 |
QU Xiangmou, WU Yingbo, JIANG Xiaoling. Federated data augmentation algorithm for non-independent and identical distributed data[J]. Computer Science, 2022, 49(12):33-39.
doi: 10.11896/jsjkx.220300031 |
|
[43] | 王峰. 变电设备数据质量评价模型研究[J]. 广东电力, 2020, 33(3):17-25. |
WANG Feng. Research on data quality evaluation model of substation equipment[J]. Guangdong Electric Power, 2020, 33(3):17-25. | |
[44] | CAO X J, SUN G, YU H F, et al. PerFED-GAN: Personalized federated learning via generative adversarial networks[J]. IEEE Internet Things Journey, 2023, 10(5): 3749-3762. |
[45] | WANG Y S, XU H, ALI W, et al. FedFTHA: A fine-tuning and head aggregation method in federated learning[J]. IEEE Internet Things Journal, 2023, 10(14):12749-12762. |
[46] | 王波, 代晓蕊, 王伟, 等. 面向联邦学习的对抗样本投毒攻击[J]. 中国科学:信息科学, 2023, 53(3):470-484. |
WANG Bo, DAI Xiaorui, WANG Wei, et al. Adversarial examples for poisoning attacks against federated learning[J]. Science China Information Sciences, 2023, 53(3):470-484. | |
[47] | 汤奕, 陈倩, 李梦雅, 等. 电力信息物理融合系统环境中的网络攻击研究综述[J]. 电力系统自动化, 2016, 40(17):59-69. |
TANG Yi, CHEN Qian, LI Mengya, et al. Overview on cyber-attacks against cyber physical power system[J]. Automation of Electric Power Systems, 2016, 40(17):59-69. | |
[48] | 肖雄, 唐卓, 肖斌, 等. 联邦学习的隐私保护与安全防御研究综述[J]. 计算机学报, 2023, 46(5):1019-1044. |
XIAO Xiong, TANG Zhuo, XIAO Bin, et al. A survey on privacy and security issues in federated learning[J]. Computer Science, 2023, 46(5):1019-1044. | |
[49] | XIA Q, TAO Z Y, LI Q, et al. Byzantine Tolerant algorithms for federated learning[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(6):3172-3183. |
[50] | MIAO Y B, YAN X R, LI X H, et al. RFed: Robustness-enhanced privacy-preserving federated learning against poisoning attack[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 5814-5827. |
[51] | CHEN Z K, YU S X, FAN M Y, et al. Privacy-enhancing and robust backdoor defense for federated learning on heterogeneous data[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 693-707. |
[52] | ZHANG J L, ZHU C C, SUN X B, et al. FLPurifier: Backdoor defense in federated learning via decoupled contrastive training[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 4752-4766. |
[53] |
邱鑫源, 叶泽聪, 崔翛龙, 等. 联邦学习通信开销研究综述[J]. 计算机应用, 2022, 42(2):333-342.
doi: 10.11772/j.issn.1001-9081.2021020232 |
QIU Xinyuan, YE Zecong, CUI Xiaolong, et al. Survey of communication overhead of federated learning[J]. Journal of Computer Applications, 2022, 42(2):333-342.
doi: 10.11772/j.issn.1001-9081.2021020232 |
|
[54] | CHEN C, JIANG B H, LIU S L, et al. Efficient federated learning in resource-constrained edge intelligence networks using model compression[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2):2643-2655. |
[55] | XIA C Y, TSANG D H K, LAU V K N. Structured Bayesian federated learning for green AI: A decentralized model compression using turbo-VBI-based approach[J]. IEEE Internet Things Journal, 2024, 11(7): 12783-12798. |
[56] | MALINOVSKY G, KOVALEV D, GASANOV E, et al. From local SGD to local fixed-point methods for federated learning[C]// Proceedings of the 37th International Conference on Machine Learning. ICML, 2020:13-18. |
[57] | REN C E, AN R Q, XUAN Z H. FBL-ET: A federated broad learning framework based on event trigger[J]. Knowledge-Based Systems, 2023, 265: 110366. |
[58] | SUN J, CHEN T Y, GIANNAKIS G B, et al. Lazily aggregated quantized gradient innovation for communication-efficient federated learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 2031-2044. |
[59] | GU B, XU A, HUO Z Y, et al. Privacy-preserving asynchronous vertical federated learning algorithms for multiparty collaborative learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(11): 6103-6115. |
[60] | LI H X, CAI Z Y, WANG J Y, et al. FedTP: Federated learning by transformer personalization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023 :1-15. |
[61] | VETTORUZZO A, BOUGUELIA M R, VANSCHOREN J, et al. Advances and challenges in meta-learning: A technical review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(7):4763-4779. |
[62] | WANG X, FAN W B, HU X Z, et al. Differential privacy-preserving of multi-party collaboration under federated learning in data center networks[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(2):1223-1237. |
[63] | SCHNEIDER T, SURESH A, YALAME H. Comments on privacy-enhanced federated learning against poisoning adversaries[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 1407-1409. |
[64] | HALLAJI E, RAZAVI-FAR R, SAIF M, et al. Decentralized federated learning: A survey on security and privacy[J]. IEEE Transactions on Big Data, 2024, 10(2) :194-213. |
[65] | HASSAN N U, YUEN C, NIYATO D. Blockchain technologies for smart energy systems fundamentals, challenges, and solutions[J]. IEEE Industrial Electronics Magazine, 2019, 13(4):106-118. |
[66] | MHAISEN N, ABDELLATIF A A, MOHAMED A, et al. Optimal user-edge assignment in hierarchical federated learning based on statistical properties and network topology constraints[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(1): 55-66. |
[67] |
李彬, 白雪峰, 李志超, 等. 基于联邦学习的分布式电采暖互动模式设计与展望[J]. 综合智慧能源, 2024, 46(1): 56-64.
doi: 10.3969/j.issn.2097-0706.2024.01.007 |
LI Bin, BAI Xuefeng, LI Zhichao, et al. Design and prospect of distributed electric heating interactive mode based on federated learning[J]. Integrated Intelligent Energy, 2024, 46(1): 56-64.
doi: 10.3969/j.issn.2097-0706.2024.01.007 |
[1] | 赵大周, 谢玉荣, 张钟平, 邓睿锋, 刘丽丽. 300 MW燃煤供热机组熔盐储热系统设计及经济性分析[J]. 综合智慧能源, 2024, 46(9): 45-52. |
[2] | 樊颜搏, 熊亚选, 李想, 田曦, 杨洋. 基于遗传算法的建筑用能多目标优化应用进展[J]. 综合智慧能源, 2024, 46(9): 69-85. |
[3] | 彭乐瑶, 马刚, 陈永华, 颜云松, 赖业宁, 李祝昆, 刘东洋, 唐靖. 考虑碳交易体系的微电网多阶段鲁棒优化运行[J]. 综合智慧能源, 2024, 46(9): 9-19. |
[4] | 李菲菲, 徐绘薇, 崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究[J]. 综合智慧能源, 2024, 46(8): 12-19. |
[5] | 李菲菲, 王舒泓, 崔金栋. 全生命周期视角下汽车产业碳排放影响因素的研究——以吉林省为例[J]. 综合智慧能源, 2024, 46(8): 20-27. |
[6] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[7] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[8] | 王泽宁, 李文中, 李东辉, 徐泰山, 俞俊. 基于软件定义的新型电力系统分层自治电力平衡模式研究[J]. 综合智慧能源, 2024, 46(7): 1-11. |
[9] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[10] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[11] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[12] | 王亮, 邓松. 面向新型电力系统的异常数据检测方法[J]. 综合智慧能源, 2024, 46(5): 12-19. |
[13] | 王永利, 王亚楠, 马子奔, 秦雨萌, 陈锡昌, 滕越. 面向区块链技术应用的能源交易系统效果评价[J]. 综合智慧能源, 2024, 46(4): 78-84. |
[14] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
[15] | 丁乐言, 柯松, 杨军, 施兴烨. 基于自适应控制参数整定的虚拟同步发电机控制策略[J]. 综合智慧能源, 2024, 46(3): 35-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||