综合智慧能源

• •    

基于深度强化学习的风电场功率多变量综合优化控制

张华钦, 刘伟, 王慧, 李雷孝, 莎仁高娃   

  1. 内蒙古工业大学, 内蒙古自治区 010080 中国
    内蒙古自治区基于大数据的软件服务工程技术研究中心, 内蒙古自治区 010080 中国
    内蒙古巴彦淖尔市临河区气象局, 内蒙古自治区 015000 中国
    内蒙古自治区公安厅, 内蒙古自治区 010080 中国
  • 收稿日期:2024-10-08 修回日期:2024-12-16 接受日期:2025-01-17
  • 基金资助:
    国家自然科学基金项目(62362055); 内蒙古自治区科技计划(重点研发和成果转化计划)(2022YFSJ003,2023YFHH0052,2023KJHZ0001); 内蒙古自治区高校青年人才科研计划项目(NJYT22084,NJYT23055); 内蒙古自然科学基金(2023MS06008); 鄂尔多斯市重点研发计划项目(YF20232328); 内蒙古直属高校基础科学研究经费项目(JY20220061, JY20230119, JY20230019, JY20220078, 2022ZY0169, JY20222077, JY20240060); 内蒙古自治区气象局科技创新项目(nmqxkjcx202312,nmqxkjcx202435); 内蒙古自治区气象局科技创新项目灌溉预报在河套地区玉米滴灌中的应用(nmqxkjcx202312); 向日葵菌核病气象等级预报方法(nmqxkjcx202435)

Multivariable Integrated Power Optimization Control of Wind Farms Based on Deep Reinforcement Learning

  1. , 010080, China
    , 015000, China
  • Received:2024-10-08 Revised:2024-12-16 Accepted:2025-01-17
  • Supported by:
    National Natural Science Foundation of China(62362055); Inner Mongolia Autonomous Region Key R \& D and Achievement Transformation Program Project(2022YFSJ003,2023YFHH0052,2023KJHZ0001); Research Program for Young Talents of Inner Mongolia Colleges(NJYT22084,NJYT23055); Natural Science Foundation of Inner Mongolia(2023MS06008); Key Research \& Development Program of Erdos(YF20232328); Scientific Research Program for Inner Mongolia Colleges(JY20220061, JY20230119, JY20230019, JY20220078, 2022ZY0169, JY20222077, JY20240060); Scientific and Technological Innovation Project of Meteorological Bureau of Inner Mongolia Autonomous Region(nmqxkjcx202312,nmqxkjcx202435)

摘要: 中国提出碳达峰碳中和的双碳目标,提出构建以新能源为主体的新型电力系统。风电是实现“双碳”目标的主力军,在降低成本,增加能效方面还有很大的提升空间。本文依据真实风电场的数据,通过研究优化控制策略,提升风电场输出功率,从而进一步提高风电的利用率。本研究主要聚焦于风电机组间尾流效应问题,提出了一种基于无模型深度强化学习(DRL)的风电场功率多变量优化控制策略。该策略采用近端策略优化(PPO)算法对动态风电场中的风机偏航角、倾斜角、叶片桨距角和叶尖速比(TSR)多个变量进行优化,通过智能体在运行过程中产生的数据进行智能学习,从而得到最优的控制策略,克服了传统数学优化方法的局限性。仿真结果表明,与现有的风电机组控制算法相比,基于无模型DRL的多变量优化控制策略显著提高了计算效率,降低了参数优化的难度,优化了尾流方向和强度,优化后平均输出功率提升37.08%。

关键词: 风电场, 深度强化学习, 尾流控制, 多变量控制, 功率优化

Abstract: China has proposed the carbon peaking and carbon neutrality goals which based on a new power system domicated by renewable energy sources. Wind power is the key to achieve the goal, and there is still need to be improved in terms of cost reduction and energy efficiency increase. We study the optimisation control strategy based on the read wind farms data, to improve the output power of the wind farms, so as to further increase the utilisation rate of wind power. This study mainly focuses on the problem of wake effects among wind turbines and proposes a multivariate optimal control strategy for wind farms based on model-free Deep Reinforcement Learning(DRL). The strategy adopts the Proximal Policy Optimization (PPO) algorithm to optimize multiple variables such as yaw angle, tilt angle, blade pitch angle, and tip speed ratio (TSR) in a dynamic wind farm. Using data generated by the agent during operation for intelligent learning, the optimal control strategy is obtained, overcoming the limitations of traditional mathematical optimization methods. Simulation results show that compared to existing wind turbine control algorithms, the model-free DRL-based multivariable optimization control strategy significantly improves computational efficiency, reduces the difficulty of parameter optimization, optimizes wake direction and intensity, and it has a 37.08% increase in average output power after optimisation.

Key words: Wind farm, Deep reinforcement learning, Wake control, Multivariable control, Wind generation power