综合智慧能源 ›› 2025, Vol. 47 ›› Issue (1): 51-61.doi: 10.3969/j.issn.2097-0706.2025.01.007

• 虚拟电厂多能优化 • 上一篇    下一篇

考虑风光消纳的风光核储混合系统容量优化

聂雪颖1,2(), 程懋松1,2,*(), 左献迪1, 戴志敏1,2()   

  1. 1.中国科学院上海应用物理研究所,上海 201800
    2.中国科学院大学 核科学与技术学院,北京 100049
  • 收稿日期:2024-08-14 修回日期:2024-10-31 出版日期:2025-01-25
  • 通讯作者: *程懋松(1981),男,研究员,从事钍基熔盐堆核能系统建模与仿真方面的研究,chengmaosong@sinap.ac.cn
  • 作者简介:聂雪颖(1997),女,博士生,从事核能-可再生能源混合系统方面的研究,niexueying@sinap.ac.cn
    戴志敏(1969),男,研究员,从事钍基熔盐堆核能系统科学与工程方面的研究,daizhimin@sinap.ac.cn

Capacity optimization of wind-solar-nuclear-energy storage hybrid system considering wind and solar energy consumption

NIE Xueying1,2(), CHENG Maosong1,2,*(), ZUO Xiandi1, DAI Zhimin1,2()   

  1. 1. Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China
    2. School of Nuclear Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2024-08-14 Revised:2024-10-31 Published:2025-01-25

摘要:

本研究主要通过多目标进化算法对风光核储混合能源系统进行容量优化配置。混合能源系统包括光伏电池、风机、小型模块化钍基熔盐堆(smTMSR),以及蓄热系统等。以提高供电稳定性、减小发电成本、降低弃电率(ECP)和提高可再生能源在整个供电系统的出力占比(可再生能源占比(REF))为目标,选择光伏容量、风机容量,以及蓄热系统容量作为优化参数,并选取武威市当地的气象数据作为输入参数,通过对非支配排序遗传算法Ⅱ,Ⅲ(NSGA-Ⅱ,NSGA-Ⅲ),以及强度帕累托进化算法(SPEA-SDE)性能的比较,选择较优的算法对多目标优化问题进行求解得到帕累托解集。通过基于指标相关性的指标权重确定(CRITIC)方法确定目标权重,采用理想解排序法(TOPSIS)对得到的帕累托解进行排序,从而选择最佳折中解。结果表明NSGA-Ⅱ相较于其他算法收敛速度最快,但解集均匀性较差。NSGA-Ⅲ尽管收敛速度较慢,但相较于其他算法其解集均匀性最好。优化结果显示最优容量配置功率供应缺失率(DPSP)为0.968 6%,平准化电力成本(LCOE)为0.085 7美元/(kW·h),ECP为4.898 6%,REF为21.258 9%。其中弃电量主要来自核电弃电,可再生能源弃电量较少。敏感性分析结果表明:光伏容量对DPSP,ECP及REF的影响最为显著,风机容量对LCOE的影响最为显著。风光核储混合能源系统可有效促进可再生能源消纳,保证了系统供电的稳定性。

关键词: 风光核储混合能源系统, 多目标容量配置优化, 可再生能源消纳, 指标权重确定方法, 理想解排序法, 敏感性分析

Abstract:

The capacity configuration optimization of a wind-solar-nuclear-energy storage hybrid energy system was performed through a multi-objective evolutionary algorithm in this research. The hybrid energy system included photovoltaics(PV),wind turbines(WT),small modular thorium molten salt reactor(smTMSR),and thermal energy storage(TES). The optimization objectives were to improve the stability of the electricity supply,reduce the electricity generation cost,reduce the electricity curtailment probability,and increase the fraction of renewable energy in the total power supply system(renewable energy fraction). The PV capacity,WT capacity,and TES capacity were selected as the optimization parameters,while the local meteorological data of Wuwei city were used as input parameters. By comparing the performance of the nondominated sorting genetic algorithm(NSGA-Ⅱ,NSGA-Ⅲ)and the strength Pareto evolution algorithm(SPEA-SDE),the optimal algorithm was selected to solve the multi-objective optimization problem and obtain the Pareto solution set. The Criteria Importance Through Intercriteria Correlation(CRITIC)method was used to determine the objective weights,and the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method was used to sort the obtained Pareto solutions,from which the best compromise solution was selected. The results demonstrated that NSGA-Ⅱ had the fastest convergence speed compared to other algorithms,but its solution set was less uniform. NSGA-Ⅲ,although slower to converge,had the most uniform solution set compared to other algorithms. The optimization results showed that the optimal capacity configuration resulted in a deficiency of power supply probability of 0.968 6%,a levelized cost of energy of 0.085 7 dollars/(kW·h). an electricity curtailment probability of 4.898 6%,and a renewable energy share of 21.258 9%. The electricity curtailment mainly came from nuclear power,with minimal renewable energy curtailment. The sensitivity analysis results showed that the PV capacity had the most significant impact on the probability of power supply deficiency,electricity curtailment probability,and renewable energy fraction,while the WT capacity had the most significant impact on the levelized cost of energy. The wind-solar-nuclear-energy storage hybrid energy system can effectively promote renewable energy consumption and ensure the reliability of the power supply.

Key words: wind-solar-nuclear-energy storage hybrid energy system, multi-objective capacity configuration optimization, renewable energy consumption, Methods for determining index weights, TOPSIS method, sensitivity analysis

中图分类号: