[1] |
郑浩, 崔双喜, 程叶凡, 等. 考虑风电波动与电动汽车集群储能平抑控制策略[J]. 电测与仪表, 2021, 58(7): 12-18.
|
|
ZHENG Hao, CUI Shuangxi, CHENG Yefan, et al. Control strategy of considering wind power fluctuation and the stabilization of electric vehicle cluster energy storage[J]. Electrical Measurement & Instrumentation, 2021, 58(7): 12-18.
|
[2] |
刘建行, 刘方. 基于深度强化学习的梯级水蓄风光互补系统优化调度策略研究[J]. 广东电力, 2024, 37(5): 10-22.
|
|
LIU Jianhang, LIU Fang. Research on optimized dispatching strategy of cascade hydropower-pumping-storage-wind-photovoltaic multi-energy complementary system based on deep reinforcement learning[J]. Guangdong Electric Power, 2024, 37(5): 10-22.
|
[3] |
林彦旭, 高辉. 基于SSA-VMD-BiLSTM模型的充电站负荷预测方法[J]. 广东电力, 2024, 37(6): 53-61.
|
|
LIN Yanxu, GAO Hui. Load prediction method of charging station based on SSA-VMD-BiLSTM model[J]. Guangdong Electric Power, 2024, 37(6): 53-61.
|
[4] |
李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34.
doi: 10.3969/j.issn.2097-0706.2024.06.004
|
|
LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning[J]. Integrated Intelligent Energy, 2024, 46(6): 27-34.
doi: 10.3969/j.issn.2097-0706.2024.06.004
|
[5] |
项顶, 胡泽春, 宋永华, 等. 通过电动汽车与电网互动减少弃风的商业模式与日前优化调度策略[J]. 中国电机工程学报, 2015, 35(24): 6293-6303.
|
|
XIANG Ding, HU Zechun, SONG Yonghua, et al. Business model and day-ahead dispatch strategy to reduce wind power curtailment through vehicle-to-grid[J]. Proceedings of the CSEE, 2015, 35(24): 6293-6303.
|
[6] |
MÜLLER F L, SZABÓ J, SUNDSTRÖM O, et al. Aggregation and disaggregation of energetic flexibility from distributed energy resources[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1205-1214.
|
[7] |
ZHANG N, HU Z G, DAI D H, et al. Unit commitment model in smart grid environment considering carbon emissions trading[J]. IEEE Transactions on Smart Grid, 2016, 7(1):420-427.
|
[8] |
ZENG B, ZHANG J H, YANG X, et al. Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response[J]. IEEE Transactions on Power Systems, 2014, 29(3):1153-1165.
|
[9] |
LEE W, XIANG L, SCHOBER R, et al. Electric vehicle charging stations with renewable power generators:a game theoretical analysis[J]. IEEE Transactions on Smart Grid, 2015, 6(2):608-617.
|
[10] |
TAVAKOLI A, NEGNEVITSKY M, NGUYEN D T, et al. Energy exchange between electric vehicle load and wind generating utilities[J]. IEEE Transactions on Power Systems, 2016, 31(2):1248-1258.
|
[11] |
VAYÁ M G, ANDERSSON G. Self scheduling of plug-in electric vehicle aggregator to provide balancing services for wind power[J]. IEEE Transactions on Sustainable Energy, 2016, 7(2):886-899.
|
[12] |
SIKSNYS L, VALSOMATZIS E, HOSE K, et al. Aggregating and disaggregating flexibility objects[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(11): 2893-2906.
|
[13] |
VAGROPOULOS S, KYRIAZIDIS D, BAKIRTZIS A. Real-time charging management framework for electric vehicle aggregators in a market environment[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 948-957.
|
[14] |
宋磊. 电动汽车充电与大规模风电并网的协同调度研究[D]. 济南: 山东大学, 2018.
|
|
SONG Lei. Research on collaborative scheduling of electric vehicle charging and large-scale wind power grid connection[D]. Jinan: Shandong University, 2018.
|
[15] |
孙波, 孙佳佳, 董浩. 基于分时充电电价的电动汽车消纳风电的机组调度优化模型[J]. 可再生能源, 2017, 35(1): 110-118.
|
|
SUN Bo, SUN Jiajia, DONG Hao. Unit dispatch optimization model of electrical vehicle to accommodate the wind power based on time-of-use charging price[J]. Renewable Energy Resources, 2017, 35(1): 110-118.
|
[16] |
XU Z, HU Z, SONG Y, et al. Risk-averse optimal bidding strategy for demand-side resource aggregators in day-ahead electricity markets under uncertainty[J]. IEEE Transactions on Smart Grid, 2015, 8(1): 96-105.
|
[17] |
王静雯, 李华强, 李旭翔, 等. 综合能源服务效用模型及用户需求评估[J]. 中国电机工程学报, 2020, 40(2): 411-425.
|
|
WANG Jingwen, LI Huaqiang, LI Xuxiang, et al. Utility model and demand assessment method of integrated energy service[J]. Proceedings of the CSEE, 2020, 40(2): 411-425.
|
[18] |
石玉东, 蒋卓臻, 高红均, 等. 促进风电消纳的配电网分布式电源与电动汽车充电站联合鲁棒规划[J]. 可再生能源, 2018, 36(11): 1638-1644.
|
|
SHI Yudong, JIANG Zhuozhen, GAO Hongjun, et al. A joint robust planning of distributed generation and electric vehicle charging stations in distribution network to promote accommodation of wind power[J]. Renewable Energy Resources, 2018, 36(11): 1638-1644.
|
[19] |
QIAO B H, LIU J. Multi-objective dynamic economic emission dispatch based on electric vehicles and wind power integrated system using differential evolution algorithm[J]. Renewable Energy, 2020, 154:316-336.
|
[20] |
吴巨爱, 薛禹胜, 谢东亮, 等. 电动汽车参与电量市场与备用市场的联合风险调度[J]. 电工技术学报, 2023, 38(23): 6407-6418.
|
|
WU Juai, XUE Yusheng, XIE Dongliang, et al. The joint risk dispatch of electric vehicle in day-ahead electricity energy market and reserve market[J]. Transactions of China Electrotechnical Society, 2023, 38(23):6407-6418.
|
[21] |
张巍, 王丹. 基于云边协同的电动汽车实时需求响应调度策略[J]. 电网技术, 2022, 46(4): 1447-1458.
|
|
ZHANG Wei, WANG Dan. Real-time demand response scheduling strategy for electric vehicles based on cloud edge collaboration[J]. Power System Technology, 2022, 46(4): 1447-1458.
|
[22] |
郁海彬, 卢闻州, 唐亮, 等. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77.
doi: 10.3969/j.issn.2097-0706.2024.06.008
|
|
YU Haibin, LU Wenzhou, TANG Liang, et al. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences[J]. Integrated Intelligent Energy, 2024, 46(6): 66-77.
doi: 10.3969/j.issn.2097-0706.2024.06.008
|
[23] |
杨天宇, 郭庆来, 盛裕杰, 等. 系统互联视角下的城域电力-交通融合网络协同[J]. 电力系统自动化, 2020, 44(11): 1-9.
|
|
YANG Tianyu, GUO Qinglai, SHENG Yujie, et al. Coordination of urban integrated electric power and traffic network from perspective of system interconnection[J]. Automation of Electric Power Systems, 2020, 44(11): 1-9.
|
[24] |
SONG J, HE G N, WANG J X, et al. Shaping future low carbon energy and transportation systems:digital technologies and applications[J]. iEnergy, 2022, 1(3):285-305.
|
[25] |
胡泽春, 邵成成, 何方, 等. 电网与交通网耦合的设施规划与运行优化研究综述及展望[J]. 电力系统自动化, 2022, 46(12): 3-19.
|
|
HU Zechun, SHAO Chengcheng, HE Fang, et al. Review and prospect of research on facility planning and optimal operation for coupled power and transportation networks[J]. Automation of Electric Power Systems, 2022, 46(12): 3-19.
|
[26] |
HAN K, FRIESZ T L, YAO T. A partial differential equation formulation of Vickrey's bottleneck model,part II:Numerical analysis and computation[J]. Transportation Research Part B: Methodological, 2013, 49:75-93.
|
[27] |
SZETO W Y. Enhanced lagged cell-transmission model for dynamic traffic assignment[J]. Transportation Research Record, 2008, 2085:76-85.
|
[28] |
GENTILE G. Using the general link transmission model in a dynamic traffic assignment to simulate congestion on urban networks[J]. Transportation Research Procedia, 2015, 5:66-81.
|