[1] |
许昌, 钟淋涓. 风电场规划与设计[M]. 北京: 中国水利水电出版社, 2014.
|
[2] |
赵建立, 向佳霓, 王隗东, 等. 考虑风电不确定性的数据中心平抑风电功率波动的调度方法[J]. 综合智慧能源, 2022, 44(11): 70-78.
doi: 10.3969/j.issn.2097-0706.2022.11.010
|
|
ZHAO Jianli, XIANG Jiani, WANG Weidong, et al. A scheduling method for suppressing wind power fluctuation of data centers considering wind power uncertainty[J]. Integrated Intelligent Energy, 2022, 44(11): 70-78.
doi: 10.3969/j.issn.2097-0706.2022.11.010
|
[3] |
蔡旭, 李征. 风电机组与风电场的动态建模[M]. 北京: 科学出版社, 2016.
|
[4] |
李红菊, 林亮, 石双龙. 风电场的随机优化模型及其混合智能算法[J]. 华电技术, 2009, 31(12): 73-76.
|
|
LI Hongju, LIN Liang, SHI Shuanglong. Stochastic optimization model and its hybrid intelligent algorithm for wind power station[J]. Huadian Technology, 2009, 31(12): 73-76.
|
[5] |
张三洪, 党杰, 戴剑丰, 等. 考虑最优转速与桨距角控制的风电场限功率优化控制策略[J]. 电网技术, 2021, 45(5): 1844-1851.
|
|
ZHANG Sanhong, DANG Jie, DAI Jianfeng, et al. Optimal control strategy for wind power curtailment considering optimal speed and pitch angle control[J]. Power System Technology, 2021, 45(5): 1844-1851.
|
[6] |
杜强. 计及系统备用约束的风电场功率优化控制研究[J]. 电气自动化, 2022, 44(2): 15-17.
|
|
DU Qiang. Research on wind farm power optimal control considering system reserve constraints[J]. Electrical Automation, 2022, 44(2): 15-17.
|
[7] |
KING J, FLEMING P, KING R, et al. Control-oriented model for secondary effects of wake steering[J]. Wind Energy Science, 2021, 6(3): 701-714.
|
[8] |
ZHANG J C, ZHAO X W. A novel dynamic wind farm wake model based on deep learning[J]. Applied Energy, 2020, 277: 115552.
|
[9] |
JENSEN N O. A note on wind generator interaction: Risø-M-2411[R]. Roskilde: Risø National Laboratory, 1983.
|
[10] |
FRANDSEN S, BARTHELMIE R, PRYOR S, et al. Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind Energy, 2006, 9(1/2): 39-53.
|
[11] |
BASTANKHAH M, PORTÉ-AGEL F. A new analytical model for wind-turbine wakes[J]. Renewable Energy, 2014, 70: 116-123.
|
[12] |
MARTÍNEZ-TOSSAS L A, ANNONI J, FLEMING P A, et al. The aerodynamics of the curled wake: A simplified model in view of flow control[J]. Wind Energy Science, 2019, 4(1): 127-138.
|
[13] |
王晰, 苏开元, 谢小荣. 面向海上风电高效利用的水下抽水蓄能建模与控制[J]. 电网技术, 2024, 48(10): 4167-4174.
|
|
WANG Xi, SU Kaiyuan, XIE Xiaorong. Modeling and control of underwater pumped hydro storage for offshore wind power utilization[J]. Power System Technology, 2024, 48(10): 4167-4174.
|
[14] |
SINISCALCHI-MINNA S, BIANCHI F D, DE-PRADA-GIL M, et al. A wind farm control strategy for power reserve maximization[J]. Renewable Energy, 2019, 131: 37-44.
|
[15] |
PARK J, LAW K H. Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[J]. Energy Conversion and Management, 2015, 101: 295-316.
|
[16] |
MARDEN J R, RUBEN S D, PAO L Y. A model-free approach to wind farm control using game theoretic methods[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1207-1214.
|
[17] |
DEL POZO GONZÁLEZ H, DOMÍNGUEZ-GARCÍA J L. Non-centralized hierarchical model predictive control strategy of floating offshore wind farms for fatigue load reduction[J]. Renewable Energy, 2022, 187: 248-256.
|
[18] |
KONG X B, MA L L, WANG C, et al. Large-scale wind farm control using distributed economic model predictive scheme[J]. Renewable Energy, 2022, 181: 581-591.
|
[19] |
VALI M, PETROVIĆ V, BOERSMA S, et al. Adjoint-based model predictive control for optimal energy extraction in waked wind farms[J]. Control Engineering Practice, 2019, 84: 48-62.
|
[20] |
叶林, 陈超宇, 张慈杭, 等. 基于分布式模型预测控制的风电场参与AGC控制方法[J]. 电网技术, 2019, 43(9): 3261-3270.
|
|
YE Lin, CHEN Chaoyu, ZHANG Cihang, et al. Wind farm participating in AGC based on distributed model predictive control[J]. Power System Technology, 2019, 43(9): 3261-3270.
|
[21] |
ZHU X X, ZHANG Y S, LI J H, et al. Shared energy storage assists the grid-connected two-layer online optimization control strategy of wind farm groups[J]. Journal of Energy Storage, 2024, 99: 113237.
|
[22] |
MANSOURI A, MAGRI AEL, LAJOUAD R, et al. Wind energy based conversion topologies and maximum power point tracking: a comprehensive review and analysis[J]. e-Prime—advances in electrical engineering,electronics and energy, 2023, 6: 100351.
|
[23] |
JAVANSHIR N, PEKKINEN S, SANTASALO-AARNIO A, et al. Green hydrogen and wind synergy: Assessing economic benefits and optimal operational strategies[J]. International Journal of Hydrogen Energy, 2024, 83: 811-825.
|
[24] |
WEI S S, GAO X H, ZHANG Y, et al. An improved stochastic model predictive control operation strategy of integrated energy system based on a single-layer multi-timescale framework[J]. Energy, 2021, 235: 121320.
|
[25] |
GUO Y, KABAMBA P T, MEERKOV S M, et al. Quasilinear control of wind farm power output[J]. IEEE Transactions on Control Systems Technology, 2015, 23(4):1555-1562.
|