综合智慧能源

• •    

基于自适应多任务扩散模型的风光荷场景生成方法

张志洪, 胡旭光, 吴恩凯, 张弛, 周诚浩   

  1. 东北大学, 辽宁 110819 中国
    辽宁省电子信息产品监督检验院, 辽宁 110053 中国
  • 收稿日期:2025-06-16 修回日期:2025-07-21
  • 基金资助:
    国家自然科学基金项目(62303103)

Adaptive Multi-task Diffusion Modeling Approach for Power System Scenario Generation

  1. , 110819, China
    , 110053, China
  • Received:2025-06-16 Revised:2025-07-21
  • Supported by:
    National Natural Science Foundation of China(62303103)

摘要: 随着风力、光伏等高比例可再生能源并网,生成能够准确捕捉各变量动态特性及其复杂相互依赖关系的联合场景,对电力系统调度、控制至关重要。为实现风光荷场景出力建模,本文提出了基于自适应多任务扩散模型的风光荷景生成方法。首先,提出了基于联合去噪网络的多任务扩散模学习架构,通过联合处理多变量状态向量并融合时间信息,生成在物理耦合关系与时间依赖模式上真实的联合场景。在此基础上,提出了基于异构数据动态特征引导的自适应扩散策略模块,通过提取生成数据的动态统计特征,并据此动态调整扩散过程的噪声调度,实现数据的非平稳和时变动态特性。进而,提出了结构化一致性引导的训练准则,通过在训练目标中约束边际分布与联合依赖两种数据结构特性,实现了对模型生成过程的有效引导,提高风光荷场景的生成质量。最后,在IES-134标准测试系统电力数据集上进行了算例分析,验证了所提方法在生成风光荷联合场景方面的有效性和优越性。

关键词: 场景生成, 去噪概率扩散模型, 多任务学习, 动态特性自适应, 风光荷

Abstract: With the high-penetration integration of renewable energy sources such as wind and solar, the generation of joint scenarios that can accurately capture the dynamic characteristics and complex interdependencies of each variable is crucial for power system dispatch and control. To model the power outputs for wind, solar, and load scenarios, this paper proposes a scenario generation method based on an adaptive multi-task diffusion model. First, a multi-task learning framework is introduced, built upon a joint denoising network. This framework processes multivariate state vectors jointly while fusing temporal information to generate scenarios faithful to the intrinsic physical couplings and temporal dependency patterns. Secondly, an adaptive diffusion strategy module guided by the dynamic features of heterogeneous data is developed. This module extracts dynamic statistical features from the generated data and dynamically adjusts the noise schedule of the diffusion process accordingly, enabling the accurate modeling of the data's non-stationary and time-varying dynamics. Building on this, a structurally-consistent guided training criterion is proposed. By imposing constraints on two key data structure properties—marginal distributions and joint dependencies—within the training objective, this criterion effectively guides the model's generation process and enhances the quality of the generated wind-solar-load scenarios. Finally, case studies conducted on a power dataset from the IES-134 standard test system validate the effectiveness and superiority of the proposed method in generating joint wind-solar- load scenarios.

Key words: scenario generation, diffusion models, multi-task learning, wind-solar- load