综合智慧能源 ›› 2025, Vol. 47 ›› Issue (10): 10-25.doi: 10.3969/j.issn.2097-0706.2025.10.002
明传旺1(
), 赵宇豪1(
), 吕友军1,*(
), 李一航2,*(
)
收稿日期:2025-01-21
修回日期:2025-03-19
出版日期:2025-10-25
通讯作者:
*吕友军(1978),男,教授,博士,从事多相流热化学、氢能制备与利用等方面的研究,yjlu@mail.xjtu.edu.cn;作者简介:明传旺(1998),男,硕士生,从事质子陶瓷氨燃料电池、合成氨等方面的研究,xjtuepemingcw@163.com;基金资助:
MING Chuanwang1(
), ZHAO Yuhao1(
), LYU Youjun1,*(
), LI Yihang2,*(
)
Received:2025-01-21
Revised:2025-03-19
Published:2025-10-25
Supported by:摘要:
作为一种氢能载体和零碳燃料,氨在清洁能源发电领域的应用前景广阔。探讨了以氨为燃料的固体氧化物燃料电池(DA-SOFCs)的应用现状及发展方向。DA-SOFCs可分为氧离子传导型(O-SOFCs)和质子传导型(H-SOFCs),阐述了两者的工作原理、电解质和电极材料的选择、阳极的分解过程,并总结了电解质、电极材料、操作温度等因素对电池性能的影响。比较了不同类型DA-SOFCs使用NH3燃料的性能差异与原因:O-SOFCs在高温条件下能高效完成氨的裂解与电化学反应协同,但高温对材料的制约限制了其发展;H-SOFCs展现出高效的性能优势,但仍面临电解质材料稳定性差、阳极抗氮化能力弱、低温氨裂解效率低等挑战。
中图分类号:
明传旺, 赵宇豪, 吕友军, 李一航. 氨基固体氧化物燃料电池的研究进展与机遇[J]. 综合智慧能源, 2025, 47(10): 10-25.
MING Chuanwang, ZHAO Yuhao, LYU Youjun, LI Yihang. Research progress and opportunities in ammonia-fueled solid oxide fuel cells[J]. Integrated Intelligent Energy, 2025, 47(10): 10-25.
| [1] | AGENCY I E. CO2 Emissions in 2023[R]. AGENCY I E, 2024. |
| [2] | 国家能源局, 国家发展改革委. 氢能产业发展中长期规划(2021-2035年)[EB/OL].(2022-03-23)[2024-12-02]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038.html. |
| [3] |
迟军, 俞红梅. 基于可再生能源的水电解制氢技术(英文)[J]. 催化学报, 2018, 39(3): 390-394.
doi: 10.1016/S1872-2067(17)62949-8 |
|
CHI Jun, YU Hongmei. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394.
doi: 10.1016/S1872-2067(17)62949-8 |
|
| [4] | GIDDEY S, BADWAL S P S, MUNNINGS C, et al. Ammonia as a Renewable Energy Transportation Media[J]. Acs Sustainable Chemistry & Engineering, 2017, 5(11): 10231-10239. |
| [5] | 王源慧. 直接氨燃料电池中的阳极催化剂的研究[D]. 武汉: 中国地质大学, 2021. |
| WANG Yuanhui. The study of anode catalysts for direct ammonia fuel cell[D]. Wuhan: China University of Geosciences, 2021. | |
| [6] | LEHMANN J, LUSCHTINETZ T, GULDEN J. Power to X-green hydrogen for electrical energy and fuel, for production and products[C]//Proceedings of the 17th International Conference Heat Transfer and Renewable Sources of Energy (HTRSE). E D P Sciences: CEDEX A, 2018. |
| [7] | ZHAO Y, SETZLER B P, WANG J H, et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation[J]. Joule, 2019, 3(10): 2472-2484. |
| [8] | YANG J, AKAGI T, OKANISHI T, et al. Catalytic influence of oxide component in Ni-based cermet anodes for ammonia-fueled solid oxide fuel cells[J]. Fuel Cells, 2015, 15(2): 390-397. |
| [9] | 倪士栋, 魏胜利, 杜振华, 等. 氨燃料固体氧化物燃料电池性能研究进展[J]. 精细化工, 2024, 41(4): 750-760. |
| NI Shidong, WEI Shengli, DU Zhenhua, et al. Research progress on performance of ammonia solid oxide fuel cells[J]. Fine Chemicals, 2024, 41(4): 750-760. | |
| [10] | FARR R D, VAYENAS C G. Ammonia high-temperature solid electrolyte fuel-cell[J]. Journal of The Electrochemical Society, 1980, 127(7): 1478-1483. |
| [11] | WOJCIK A, MIDDLETON H, DAMOPOULOS I, et al. Ammonia as a fuel in solid oxide fuel cells[J]. Journal of Power Sources, 2003, 118(1-2): 342-348. |
| [12] | GANLEY J, THOMAS F, SEEBAUER E, et al. A priori catalytic activity correlations: The difficult case of hydrogen production from ammonia[J]. Catalysis Letters, 2004, 96(3/4): 117-122. |
| [13] | 邵晴, 罗凌虹, 关成志, 等. 固体氧化物电池Ni-YSZ燃料电极长期稳定性研究进展[J]. 陶瓷学报, 2022, 43(5): 759-779. |
| SHAO Qing, LUO Linghong, GUAN Chengzhi, et al. Research progress on the long-term stability of Ni-YSZ fuel electrodes in solid oxide cells[J]. Journal of Ceramics, 2022, 43(5): 759-779. | |
| [14] | MOLOUK A F S, YANG J, OKANISHI T, et al. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells[J]. Journal of Power Sources, 2016, 305: 72-79. |
| [15] | MA Q L, MA J J, ZHOU S, et al. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte[J]. Journal of Power Sources, 2007, 164(1): 86-89. |
| [16] | OH S, OH M J, HONG J, et al. A comprehensive investigation of direct ammonia-fueled thin-film solid-oxide fuel cells: Performance,limitation,and prospects[J]. iScience, 2022, 25(9):105009. |
| [17] | SHY S S, HSIEH S C, CHANG H Y. A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements[J]. Journal of Power Sources, 2018, 396: 80-87. |
| [18] | LI T, LING Y H, LIN B, et al. A simple, feasible, and non-hazardous laboratory evaluation of direct ammonia solid oxide fuel cells fueled by aqueous ammonia[J]. Separation and Purification Technology, 2022, 297:121511. |
| [19] | XU K, ZHU F, HOU M Y, et al. Activating and stabilizing the surface of anode for high-performing direct-ammonia solid oxide fuel cells[J]. Nano Research, 2023, 16(2): 2454-2462. |
| [20] | WANG Y H, YANG J, WANG J X, et al. Low temperature ammonia decomposition catalyst and its application for direct ammonia-fueled solid oxide fuel cells[J]. ECS Transactions, 2019, 91(1) 1611-1619 |
| [21] | MA Q L, PENG R R, TIAN L Z, et al. Direct utilization of ammonia in intermediate-emperature solid oxide fuel cells[J]. Electrochemistry Communications, 2006, 8(11): 1791-1795. |
| [22] | LIU M F, PENG R R, DONG D H, et al. Direct liquid methanol-fueled solid oxide fuel cell[J]. Journal of Power Sources, 2008, 185(1): 188-192. |
| [23] | MENG G Y, JIANG C R, MA J J, et al. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen[J]. Journal of Power Sources, 2007, 173(1): 189-193. |
| [24] | HASHINOKUCHI M, YOKOCHI R, AKIMOTO W, et al. Enhancement of anode activity at Ni/Sm-doped CeO2 cermet anodes by Mo addition in NH3-fueled solid oxide fuel cells[J]. Solid State Ionics, 2016, 285: 222-226. |
| [25] | JIANG H, LIANG Z X, QIU H, et al. A High-performance and durable direct-ammonia symmetrical solid oxide fuel cell with nano La0.6SSr0.4Fe0.7Ni0.2Mo0.1O3-δ-decorated doped ceria electrode[J]. Nanomaterials, 2024, 14(8): 14080673. |
| [26] | YANG J, MOLOUK A F S, OKANISHI T, et al. A stability study of Ni/Yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28701-28707. |
| [27] | HASHINOKUCHI M, ZHANG M J, DOI T, et al. Enhancement of anode activity and stability by Cr addition at Ni/Sm-doped CeO2 cermet anodes in NH3-fueled solid oxide fuel cells[J]. Solid State Ionics, 2018, 319: 180-185. |
| [28] | SHI H G, TANG J Y, YU W Q, et al. Advances in power generation from ammonia via electrocatalytic oxidation in direct ammonia fuel cells[J]. Chemical Engineering Journal, 2024, 488: 150896. |
| [29] | SINGH V, MUROYAMA H, MATSUI T, et al. Influence of cell design on the performance of direct ammonia-fueled solid oxide fuel cell: Anode-VS. electrolyte-supported cell[C]// Proceedings of the 15th International Symposium on Solid Oxide Fuel Cells(SOFC),Hollywood. Electrochemical Soc Inc, 2017. |
| [30] | CAO J, JI Y, SHAO Z. New insights into the proton-conducting solid oxide fuel cells[J]. Journal of the Chinese Ceramic Society, 2021, 49(1): 83-92. |
| [31] | LYU J D, WANG L, FAN L H, et al. Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres[J]. Journal of Rare Earths, 2008, 26(4): 505-510. |
| [32] | PELLETIER L, MCFARLAN A, MAFFEI N. Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes[J]. Journal of Power Sources, 2005, 145(2): 262-265. |
| [33] |
张靖, 刘宇宙, 贺贝贝, 等. 燃料电池金属有机框架质子膜材料研究展望[J]. 综合智慧能源, 2022, 44(8): 97-106.
doi: 10.3969/j.issn.2097-0706.2022.08.011 |
|
ZHANG Jing, LIU Yuzhou, HE Beibei, et al. Reviews on proton membrane materials for metal-organic frameworks in fuel cells[J]. Integrated Intelligent Energy, 2022, 44(8): 97-106.
doi: 10.3969/j.issn.2097-0706.2022.08.011 |
|
| [34] | YANG L, WANG S Z, BLINN K, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ[J]. Science, 2009, 326: 126-129. |
| [35] | YANG J, MOLOUK A F S, OKANISHI T, et al. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2015, 7(13):7406-7412. |
| [36] | MIYAZAKI K, OKANISHI T, MUROYAMA H, et al. Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells[J]. Journal of Power Sources, 2017, 365: 148-154. |
| [37] | DUAN C C, KEE R J, ZHU H Y, et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells[J]. Nature, 2018, 557: 217-222. |
| [38] | XIE K, YAN R Q, DONG D H, et al. A modified suspension spray combined with particle gradation method for preparation of protonic ceramic membrane fuel cells[J]. Journal of Power Sources, 2008, 179(2): 576-583. |
| [39] | LIN Y, RAN R, GUO Y M, et al. Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2637-2642. |
| [40] | AN H, LEE H-W, KIM B-K, et al. A 5×5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm-2 at 600℃[J]. Nature Energy, 2018, 3(10): 870-875. |
| [41] | LIU F, DENG H, DIERCKS D, et al. Lowering the operating temperature of protonic ceramic electrochemical cells to <450 ℃[J]. Nature Energy, 2023, 8(10):1145-1157. |
| [42] | 刘琪, 陈绘丽. 基于NH3燃料的Ni-BZCYYb阳极在SOFC中的应用[J]. 山西大学学报(自然科学版), 2023, 46(1): 202-207. |
| LIU Qi, CHEN Huili. Application of Ni-BZCYYb anode in SOFC based on NH3 fuel[J]. Journal of Shanxi University (Natural Science Edition), 2023, 46(1): 202-207. | |
| [43] | HE F, GAO Q N, LIU Z Q, et al. A new Pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures[J]. Advanced Energy Materials, 2021, 11(19):1-10. |
| [44] | ZHANG H, ZHOU Y C, PEI K, et al. An efficient and durable anode for ammonia protonic ceramic fuel cells[J]. Energy & Environmental Science, 2022, 15(1): 287-295. |
| [45] | PAN Y X, ZHANG H, XU K, et al. A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer[J]. Applied Catalysis B: Environmental, 2022, 306: 121071. |
| [46] | ZHU L Z, CADIGAN C, DUAN C C, et al. Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst[J]. Communications Chemistry, 2021, 4(1): 00559-2. |
| [47] | ZHANG H, XU K, XU Y S, et al. In situ formed catalysts for active, durable, and thermally stable ammonia protonic ceramic fuel cells at 550℃[J]. Energy & Environmental Science, 2024, 17(10): 3433-3442. |
| [48] | KIM D, BAE K T, KIM K J, et al. High-performance protonic ceramic electrochemical cells[J]. ACS Energy Letters, 2022, 7(7): 393-400. |
| [49] | XU M, YU J, SONG Y, et al. Advances in ceramic thin films fabricated by pulsed laser deposition for intermediate-temperature solid oxide fuel cells[J]. Energy & Fuels, 2020, 34(9): 10568-10582. |
| [50] | OKANISHI T, OKURA K, SRIFA A, et al. Comparative study of ammonia-fueled solid oxide fuel cell systems[J]. Fuel Cells, 2017, 17(3): 383-390. |
| [51] | KISHIMOTO M, MUROYAMA H, SUZUKI S, et al. Development of 1 kW-class ammonia-fueled solid oxide fuel cell stack[J]. Fuel Cells, 2020, 20(1): 80-88. |
| [1] | 杨磊, 王睿, 马丽丽, 孙宁, 李雪莲, 陈婷, 王绍荣, 史彩霞. 钙和铁共掺杂PrBaCo2O5+δ作为固体氧化物燃料电池阴极的研究[J]. 综合智慧能源, 2024, 46(7): 47-52. |
| [2] | 曹加锋, 李欣然, 邵善德, 冀月霞, 邵宗平. 质子陶瓷燃料电池稳定性研究综述[J]. 综合智慧能源, 2022, 44(8): 58-67. |
| [3] | 杨莹, 张雁祥, 闫牧夫. 中低温固体氧化物燃料电池电解质制备方法研究进展[J]. 综合智慧能源, 2022, 44(8): 50-57. |
| [4] | 朱沙沙, 李宗宝, 邓雅恬, 王欣, 贾礼超. 合金纳米颗粒在碳氢燃料SOFC阳极中的应用[J]. 综合智慧能源, 2022, 44(8): 33-42. |
| [5] | 罗丽琦, 王月, 钟海军, 李庆勋, 谢广元, 王绍荣. 固体氧化物燃料电池热电联供系统设计[J]. 综合智慧能源, 2022, 44(8): 25-32. |
| [6] | 高圆, 李智, 李甲鸿, 高九涛, 李成新, 李长久. 金属支撑固体氧化物燃料电池技术进展[J]. 综合智慧能源, 2022, 44(8): 1-24. |
| [7] | 王丽, 李蓓, 张帆, 陈金伟. 基于增益调度模型预测控制的SOFC-GT混合动力系统温度控制[J]. 综合智慧能源, 2022, 44(10): 42-49. |
| [8] | 王朝阳, 刘明, 赵永亮, 种道彤, 严俊杰. 绝热条件下固体氧化物燃料电池的瞬态电化学特性[J]. 华电技术, 2021, 43(7): 30-36. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

