综合智慧能源 ›› 2022, Vol. 44 ›› Issue (8): 50-57.doi: 10.3969/j.issn.2097-0706.2022.08.005
收稿日期:
2022-05-29
修回日期:
2022-06-21
出版日期:
2022-08-25
通讯作者:
闫牧夫(1963),男,教授,博士,从事等离子体与稀土表面改性研究, yanmufu@hit.edu.cn。作者简介:
杨莹(1996),女,在读博士研究生,从事中低温固体氧化物燃料电池研究, yangying960720@163.com。
基金资助:
YANG Ying(), ZHANG Yanxiang*(
), YAN Mufu*(
)
Received:
2022-05-29
Revised:
2022-06-21
Published:
2022-08-25
摘要:
固体氧化物燃料电池(SOFC)能够通过氢气与氧气的电化学反应将化学能转化为电能,符合清洁低碳导向,有利于“双碳”目标的实现。减小电解质的厚度有利于降低传统SOFC的工作温度并提高其在中低温(< 600 ℃)工作环境中的电化学性能。综述了几种典型电解质制备技术的主要工艺特点和研究进展,分析了其在电解质工业生产中的优势和局限性,指出以脉冲激光沉积和磁控溅射为代表的物理气相沉积技术更符合清洁生产的理念,更适宜工业生产。
中图分类号:
杨莹, 张雁祥, 闫牧夫. 中低温固体氧化物燃料电池电解质制备方法研究进展[J]. 综合智慧能源, 2022, 44(8): 50-57.
YANG Ying, ZHANG Yanxiang, YAN Mufu. Research progress on preparation methods of medium and low temperature SOFC electrolytes[J]. Integrated Intelligent Energy, 2022, 44(8): 50-57.
[1] | 冯刚. 《中国气候变化蓝皮书(2021)》发布[J]. 环境, 2021(11):75-77. |
[2] | 中华人民共和国国务院. 《新时代的中国能源发展》白皮书[EB/OL].(2020-12-21) [2022-05-26] http://www.scio.gov.cn/zfbps/ndhf/42312/Document/1695299/1695299.htm. |
[3] |
WACHSMAN E D, KANG T L. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334:935-939.
doi: 10.1126/science.1204090 |
[4] |
HONG S, LEE D, LIM Y, et al. Yttria-stabilized zirconia thin films with restrained columnar grains for oxygen ion conducting electrolytes[J]. Ceramics International, 2016, 42(15):16703-16709.
doi: 10.1016/j.ceramint.2016.07.123 |
[5] |
LIM Y, HONG S, BAE J, et al. Influence of deposition temperature on the microstructure of thin-film electrolyte for SOFCs with a nanoporous AAO support structure[J]. International Journal of Hydrogen Energy, 2017, 42(15):10199-10207.
doi: 10.1016/j.ijhydene.2017.03.148 |
[6] |
IONOV I V, SOLOVYEV A A, SHIPILOVA A V, et al. Reactive co-sputter deposition of nanostructured cermet anodes for solid oxide fuel cells[J]. Japanese Journal of Applied Physics, 2018, 57(1S):01AF07.
doi: 10.7567/JJAP.57.01AF07 |
[7] |
WANG H, JI W, ZHANG L, et al. Preparation of YSZ films by magnetron sputtering for anode-supported SOFC[J]. Solid State Ionics, 2011, 192(1):413-418.
doi: 10.1016/j.ssi.2010.05.022 |
[8] |
KUZMIN A V, STROEVA A Y, PLEKHANOV M S, et al. Chemical solution deposition and characterization of the La1-хSrxScO3-α thin films on La1-xSrxMnO3-α substrate[J]. International Journal of Hydrogen Energy, 2018, 43(41):19206-19212.
doi: 10.1016/j.ijhydene.2018.08.114 |
[9] |
HAILE S M. Fuel cell materials and components[J]. Acta Materialia, 2003, 51(19):5981-6000.
doi: 10.1016/j.actamat.2003.08.004 |
[10] |
PEDERSON L R, SINGH P, ZHOU X D. Application of vacuum deposition methods to solid oxide fuel cells[J]. Vacuum, 2006, 80(10):1066-1083.
doi: 10.1016/j.vacuum.2006.01.072 |
[11] |
REZUGINA E, THOMANN A L, HIDALGO H, et al. Ni-YSZ films deposited by reactive magnetron sputtering for SOFC applications[J]. Surface and Coatings Technology, 2010, 204(15):2376-2380.
doi: 10.1016/j.surfcoat.2010.01.006 |
[12] |
TULLER H L. Ionic conduction in nanocrystalline materials[J]. Solid State Ionics, 2000, 131(1-2):143-157.
doi: 10.1016/S0167-2738(00)00629-9 |
[13] |
HUANG H, NAKAMURA M, SU P, et al. High-performance ultrathin solid oxide fuel cells for low-temperature operation[J]. Journal of the Electrochemical Society, 2007, 154(1):B20-B24.
doi: 10.1149/1.2372592 |
[14] |
PARK T, CHO G Y, LEE Y H, et al. Effect of anode morphology on the performance of thin film solid oxide fuel cell with PEALD YSZ electrolyte[J]. International Journal of Hydrogen Energy, 2016, 41(22):9638-9643.
doi: 10.1016/j.ijhydene.2016.04.092 |
[15] |
ISHIHARA T, MATSUDA H, TAKITA Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor[J]. Journal of the American Chemical Society, 1994, 116(9):3801-3803.
doi: 10.1021/ja00088a016 |
[16] |
HUANG K, WAN J H, GOODENOUGH J B. Increasing power density of LSGM-based solid oxide fuel cells using new anode materials[J]. Journal of the Electrochemical Society, 2001, 148(7): A788-A794.
doi: 10.1149/1.1378289 |
[17] |
ISHIHARA T, TABUCHI J, ISHIKAWA S, et al. Recent progress in LaGaO3 based solid electrolyte for intermediate temperature SOFCs[J]. Solid State Ionics, 2006, 177(19-25):1949-1953.
doi: 10.1016/j.ssi.2006.01.044 |
[18] | MOLINA-REYES J, TIZNADO H, SOTO G, et al. Physical and electrical characterization of yttrium-stabilized zirconia(YSZ) thin films deposited by sputtering and atomic-layer deposition[J]. Journal of Materials Science, 2018, 29(18):15349-15357. |
[19] | SOLOVYEV A A, RABOTKIN S V, KUTERBEKOV K A, et al. Comparison of sputter-deposited single and multilayer electrolytes based on gadolinia-doped ceria and yttria-stabilized zirconia for solid oxide fuel cells[J]. International Journal of Electrochemical Science, 2020, 15:231-240. |
[20] |
KHARTON V V, MARQUES F, ATKINSON A. Transport properties of solid oxide electrolyte ceramics:A brief review[J]. Solid State Ionics, 2004, 174(1-4):135-149.
doi: 10.1016/j.ssi.2004.06.015 |
[21] |
ZHANG Y, HUANG X, ZHE L, et al. A study of the process parameters for yttria-stabilized zirconia electrolyte films prepared by screen-printing[J]. Journal of Power Sources, 2006, 160(2):1065-1073.
doi: 10.1016/j.jpowsour.2006.02.074 |
[22] |
BAHARUDDIN N A, ABDUL RAHMAN N F, RAHMAN HABD, et al. Fabrication of high-quality electrode films for solid oxide fuel cell by screen printing: A review on important processing parameters[J]. International Journal of Energy Research, 2020, 44(11): 8296-8313.
doi: 10.1002/er.5518 |
[23] |
XU X, XIA C, HUANG S, et al. YSZ thin films deposited by spin-coating for IT-SOFCs[J]. Ceramics International, 2005, 31(8):1061-1064.
doi: 10.1016/j.ceramint.2004.11.005 |
[24] |
CHEN K, ZHE L, NA A, et al. Fabrication and performance of anode-supported YSZ films by slurry spin coating[J]. Solid State Ionics, 2007, 177(39-40):3455-3460.
doi: 10.1016/j.ssi.2006.10.003 |
[25] |
HUI R, WANG Z, YICK S, et al. Fabrication of ceramic films for solid oxide fuel cells via slurry spin coating technique[J]. Journal of Power Sources, 2007, 172(2):840-844.
doi: 10.1016/j.jpowsour.2007.05.036 |
[26] |
KIM H J, KIM M, NEOH K C, et al. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells[J]. Journal of Power Sources, 2016, 327:401-407.
doi: 10.1016/j.jpowsour.2016.07.080 |
[27] |
MENG G, SONG H, XIA C, et al. Novel CVD techniques for Micro- and IT-SOFC fabrication[J]. Fuel Cells, 2004, 4(1-2):48-55.
doi: 10.1002/fuce.200400006 |
[28] |
CHOY K L. Chemical vapour deposition of coatings[J]. Progress in Materials Science, 2003, 48(2):57-170.
doi: 10.1016/S0079-6425(01)00009-3 |
[29] |
EHSAN M A, SOHAIL M, JAMIL R, et al. Single-step fabrication of nanostructured palladium thin films via aerosol-assisted chemical vapor deposition(AACVD) for the electrochemical detection of hydrazine[J]. Electrocatalysis, 2019, 10(3):214-221.
doi: 10.1007/s12678-019-00513-w |
[30] |
MIRMOGHTADAEI G, GHOSALYA M K, ARTIGLIA L, et al. Strong promoting effect of gold nanoparticles on the CO abatement catalytic activity of CoOx/Clay-bonded SiC catalysts produced by AA-MOCVD method using Co(acac)2 as precursor[J]. ChemistrySelect, 2020, 5(44):13878-13887.
doi: 10.1002/slct.202003728 |
[31] |
MENG G, SONG H, QIANG D, et al. Application of novel aerosol-assisted chemical vapor deposition techniques for SOFC thin films[J]. Solid State Ionics, 2004, 175(1-4):29-34.
doi: 10.1016/j.ssi.2004.09.038 |
[32] |
JANG D Y, KIM M, KIM J W, et al. High performance anode-supported solid oxide fuel cells with thin film yttria-stabilized zirconia membrane prepared by aerosol-assisted chemical vapor deposition[J]. Journal of The Electrochemical Society, 2017, 164(6):F484-F490.
doi: 10.1149/2.0181706jes |
[33] |
JANG D Y, KIM H K, KIM J W, et al. Low-temperature performance of yttria-stabilized zirconia prepared by atomic layer deposition[J]. Journal of Power Sources, 2015, 274:611-618.
doi: 10.1016/j.jpowsour.2014.10.022 |
[34] |
SHIN J W, GO D, KYE S H, et al. Review on process-microstructure-performance relationship in ALD-engineered SOFCs[J]. Journal of Physics Energy, 2019, 1(4):042002.
doi: 10.1088/2515-7655/ab30a0 |
[35] |
HONG S, BAE J, KOO B, et al. High-performance ultra-thin film solid oxide fuel cell using anodized-aluminum-oxide supporting structure[J]. Electrochemistry Communications, 2014, 47:1-4.
doi: 10.1016/j.elecom.2014.07.008 |
[36] |
CHA S W, GU Y C, LEE Y, et al. Effects of carbon contaminations on Y2O3-stabilized ZrO2 thin film electrolyte prepared by atomic layer deposition for thin film solid oxide fuel cells[J]. CIRP Annals, 2016, 65(1):515-518.
doi: 10.1016/j.cirp.2016.04.079 |
[37] |
PARK T, CHO G Y, LEE Y H, et al. Effect of anode morphology on the performance of thin film solid oxide fuel cell with PEALD YSZ electrolyte[J]. International Journal of Hydrogen Energy, 2016, 41(22):9638-9643.
doi: 10.1016/j.ijhydene.2016.04.092 |
[38] |
KUPPUSAMI P, RAGHUNATHAN V S. Status of pulsed laser deposition: Challenges and opportunities[J]. Surface Engineering, 2006, 22(2):81-83.
doi: 10.1179/174329406X98502 |
[39] |
HOBEIN B, TIETZ F, STÖVER D, et al. Pulsed laser deposition of yttria stabilized zirconia for solid oxide fuel cell applications[J]. Journal of Power Sources, 2002, 105(2):239-242.
doi: 10.1016/S0378-7753(01)00945-4 |
[40] |
JOO J H, CHOI G M. Open-circuit voltage of ceria-based thin film SOFC supported on nano-porous alumina[J]. Solid State Ionics, 2007, 178(29-30):1602-1607.
doi: 10.1016/j.ssi.2007.10.006 |
[41] |
SON J W, MYUNG D H, HWANG J, et al. Potential and limitation of application of pulsed laser deposited nano-structure LSC thin film cathode to YSZ electrolyte SOFC[J]. ECS Transactions, 2011, 35(1):2423-2427.
doi: 10.1149/1.3570239 |
[42] | BOYDENS F, MAHIEU S, HAEMERS J, et al. Influence of the magnetic field configuration on the reactive sputter deposition of TiN[J]. Physica Status Solidi (A):Applications and Materials Science, 2010, 207(1):124-128. |
[43] |
INFORTUNA A, HARVEY A S, GAUCKLER L J. Microstructures of CGO and YSZ thin films by pulsed laser deposition[J]. Advanced Functional Materials, 2008, 18(1):127-135.
doi: 10.1002/adfm.200700136 |
[44] |
KWON C, SON J, LEE J, et al. High-performance micro-solid oxide fuel cells fabricated on nanoporous anodic aluminum oxide templates[J]. Advanced Functional Materials, 2011, 21(6):1154-1159.
doi: 10.1002/adfm.201002137 |
[45] |
NOH H S, LEE H, LEE J H, et al. Thin film electrolyte micro-SOFC: Fabrication and performance improvement through thin film electrolyte and nano-structure electrodes[J]. ECS Transactions, 2009, 25(2):873-879.
doi: 10.1149/1.3205607 |
[46] |
CHO S, KIM Y N, KIM J H, et al. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte[J]. Electrochimica Acta, 2011, 56(16):5472-5477.
doi: 10.1016/j.electacta.2011.03.039 |
[47] |
JI S, AN J, JANG D Y, et al. On the reduced electrical conductivity of radio-frequency sputtered doped ceria thin film by elevating the substrate temperature[J]. Current Applied Physics, 2016, 16(3):324-328.
doi: 10.1016/j.cap.2015.12.011 |
[48] |
FRISON R, HEIROTH S, RUPP J L M, et al. Crystallization of 8 mol% yttria-stabilized zirconia thin-films deposited by RF-sputtering[J]. Solid State Ionics, 2013, 232:29-36.
doi: 10.1016/j.ssi.2012.11.014 |
[49] |
KANG S, LEE J, CHO G Y, et al. Scalable fabrication process of thin-film solid oxide fuel cells with an anode functional layer design and a sputtered electrolyte[J]. International Journal of Hydrogen Energy, 2020, 45(58):33980-33992.
doi: 10.1016/j.ijhydene.2020.09.033 |
[50] | SHIN S S, KIM J H, BAE K T, et al. Multiscale structured low-temperature solid oxide fuel cells with 13 W power at 500 ℃[J]. Energy & Environmental Science, 2020, 13(10):3459-3468. |
[51] |
SUKESHINI M A, CUMMINS R, REITZ T L, et al. Ink-jet printing: A versatile method for multilayer solid oxide fuel cells fabrication[J]. Journal of the American Ceramic Society, 2009, 92(12):2913-2919.
doi: 10.1111/j.1551-2916.2009.03349.x |
[52] |
HAN G D, BAE K, KANG E H, et al. Inkjet printing for manufacturing solid oxide fuel cells[J]. ACS Energy Letters, 2020, 5(5):1586-1592.
doi: 10.1021/acsenergylett.0c00721 |
[53] |
ZHU Z, GONG Z, QU P, et al. Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks[J]. Journal of Advanced Ceramics, 2021, 10(2):279-290.
doi: 10.1007/s40145-020-0439-9 |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 杨磊, 王睿, 马丽丽, 孙宁, 李雪莲, 陈婷, 王绍荣, 史彩霞. 钙和铁共掺杂PrBaCo2O5+δ作为固体氧化物燃料电池阴极的研究[J]. 综合智慧能源, 2024, 46(7): 47-52. |
[3] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[4] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
[5] | 刘天阳, 高亚静, 谢典, 赵良. 功能型零碳园区建设路径分析[J]. 综合智慧能源, 2023, 45(8): 44-52. |
[6] | 滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源, 2023, 45(8): 53-63. |
[7] | 胡开永, 刘峰, 吴秀杰, 胡芸清, 郑怡, 田绅. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71. |
[8] | 郁海彬, 高亦凌, 陆增洁, 董帅, 鲁林, 任逸之. 计及需求响应的风-火-储-碳捕集多源参与深度调峰市场的低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 80-89. |
[9] | 王永真, 韩艺博, 韩恺, 韩俊涛, 宋阔, 张兰兰. 基于知识图谱的数据中心综合能源系统研究综述[J]. 综合智慧能源, 2023, 45(7): 1-10. |
[10] | 李宜哲, 王丹, 贾宏杰, 周天烁, 曹逸滔, 张帅, 刘佳委. 综合能源系统能量枢纽多样性建模和典型适用性研究[J]. 综合智慧能源, 2023, 45(7): 22-29. |
[11] | 刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6): 59-65. |
[12] | 赵国涛, 钱国明, 孙艳兵, 丁泉, 朱海东. 碳逸会计在综合能源系统低碳性评价中的应用[J]. 综合智慧能源, 2023, 45(6): 73-80. |
[13] | 刘子祺, 苏婷婷, 何佳阳, 王裕. 基于多目标粒子群算法的配电网储能优化配置研究[J]. 综合智慧能源, 2023, 45(6): 9-16. |
[14] | 周舒心, 范怀林, 胡勋. 生物质基碳材料制备及其在超级电容器电极材料中的应用[J]. 综合智慧能源, 2023, 45(5): 1-12. |
[15] | 范德锴, 付洁, 刘洋, 周春宝, 代建军. 纤维素热解制备高值化学品的研究综述[J]. 综合智慧能源, 2023, 45(5): 24-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||