综合智慧能源 ›› 2023, Vol. 45 ›› Issue (8): 53-63.doi: 10.3969/j.issn.2097-0706.2023.08.007
收稿日期:
2023-05-04
修回日期:
2023-06-05
出版日期:
2023-08-25
作者简介:
滕佳伦(1999),男,在读硕士研究生,从事综合能源系统规方面的研究,tengjia7un@163.com;基金资助:
Received:
2023-05-04
Revised:
2023-06-05
Published:
2023-08-25
Supported by:
摘要:
综合智慧能源是一种综合利用信息通信、能源、智能制造等技术手段来实现能源生产、传输、储存、消费和管理的智能化、高效化、绿色化和安全化的能源系统。它不仅是一种技术革命,更是能源行业的革命,推进了传统能源系统向智慧化、综合化和绿色化转型。综合智慧能源系统通过采集、传输、处理和利用能源信息,实现能源的优化分配和精细管理,提高能源的利用效率、降低能源的消耗及排放,从而实现可持续发展。为了分析在碳中和背景下综合智慧能源的关键技术以及未来的发展方向,介绍了国内外综合智慧能源的发展状况,阐述了综合智慧能源的内涵及技术架构,并将其关键技术归纳为能源生产、能源输送、能源存储、能源消费、能源智慧化和多能协同优化等6个方面的技术。对各技术的发展现状和核心问题进行了分析总结。提出了4点建议:推动智能化的电力市场建设,提升能源数据管理能力,推进以电能为基础的客户端供电业务的发展,以及要推进我国自主研发的核心技术和装备。
中图分类号:
滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源, 2023, 45(8): 53-63.
TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality[J]. Integrated Intelligent Energy, 2023, 45(8): 53-63.
[1] | 《中国能源发展报告2022》:我国能源绿色低碳转型加快推进[J]. 经济导刊, 2022(7):6. |
[2] | 张士宁, 谭新, 侯方心, 等. 全球碳中和形势盘点与发展指数研究[J]. 全球能源互联网, 2021, 4(3):264-272. |
ZHANG Shining, TAN Xin, HOU Fangxin, et al. Research on global carbon neutrality target and development index[J]. Journal of Global Energy Interconnection, 2021, 4(3):264-272. | |
[3] | 周伏秋, 邓良辰, 冯升波, 等. 综合能源服务发展前景与趋势[J]. 中国能源, 2019, 41(1):4-7,14. |
ZHOU Fuqiu, DENG Liangchen, FENG Shengbo, et al. Prospects and trends of integrated energy services[J]. Energy of China, 2019, 41(1):4-7,14. | |
[4] | 董霜. 综合智慧能源发展现状及关键技术的研究[J]. 中国工程咨询, 2017(4):43-45. |
DONG Shuang. Research on development status and key technologies of integrated smart energy[J]. Chinese Consulting Engineers, 2017(4):43-45. | |
[5] | 曹军威, 孙嘉平. 能源互联网与能源系统[M]. 北京: 中国电力出版社, 2016:53-57. |
[6] | 俞学豪, 袁海山, 叶昀. 综合智慧能源系统及其工程应用[J]. 中国勘察设计, 2021(1):87-91. |
YU Xuehao, YUAN Haishan, YE Yun. Integrated intelligent energy system and its engineering application[J]. China Exploration & Design, 2021(1):87-91. | |
[7] | 王宏, 闫园, 文福拴, 等. 国内外综合能源系统标准现状与展望[J]. 电力科学与技术学报, 2019, 34(3):3-12. |
WANG Hong, YAN Yuan, WEN Fushuan, et al. Current status and prospects of comprehensive energy system standards at home and abroad[J]. Journal of Electric Power Science and Technology, 2019, 34(3):3-12. | |
[8] | 董旭, 袁海山, 叶昀, 等. 园区综合能源系统现状与技术趋势[J]. 能源与环境, 2021(4):16-19. |
DONG Xu, YUAN Haishan, YE Yun, et al. Current status and technological trends of integrated energy systems in industrial parks[J]. Energy and Environment, 2021(4):16-19. | |
[9] |
陆王琳, 陆启亮, 张志洪. 碳中和背景下综合智慧能源发展趋势[J]. 动力工程学报, 2022, 42(1):10-18.
doi: 10.19805/j.cnki.jcspe.2022.01.002 |
LU Wanglin, LU Qiliang, ZHANG Zhihong. Development trend of comprehensive intelligent energy under the background of carbon neutrality[J]. Journal of Power Engineering, 2022, 42(1):10-18. | |
[10] | 朱海东, 郝浩, 郑剑, 等. 基于冷热电多能互补的园区综合能源系统设计[J]. 华电技术, 2021, 43(4):34-38. |
ZHU Haidong, HAO Hao, ZHENG Jian, et al. Design of integrated energy system for parks based on complementation of cold,heat and electricity[J]. Huadian Technology, 2021, 43(4):34-38. | |
[11] | 窦超. 冷热电联供与地源热泵耦合的分布式供能系统研究[D]. 北京: 华北电力大学, 2018. |
DOU Chao. Research on distributed energy supply system coupling combined cooling,heating and power with ground source heat pump[D]. Beijing: North China Electric Power University, 2018. | |
[12] |
YANG Gan, ZHAI Xiaoqiang. Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies[J]. Applied Thermal Engineering, 2018, 133:327-340.
doi: 10.1016/j.applthermaleng.2018.01.046 |
[13] | 任福康, 陈宜, 王江江. 耦合太阳能和地热能的冷热联供系统优化[J]. 工程热物理学报, 2021, 42(1):16-24. |
REN Fukang, CHEN Yi, WANG Jiangjiang. Optimization of combined cooling, heating,and power system coupled with solar and geothermal energies[J]. Journal of Engineering Thermophysics, 2021, 42(1):16-24. | |
[14] | 高秀芝, 王沣浩, 戢坤池, 等. 热泵供暖技术发展现状及展望[J]. 制冷与空调, 2019, 19(5):71-78,83. |
GAO Xiuzhi, WANG Fenghao, JI Kunchi, et al. Development status and prospects of heat pump heating technology[J]. Refrigeration and Air Conditioning, 2019, 19(5):71-78,83. | |
[15] | 胡斌, 吴迪, 姜佳彤, 等. 水蒸气超高温热泵系统的实验研究[J]. 工程热物理学报, 2021, 42(4):833-840. |
HU Bin, WU Di, JIANG Jiatong, et al. Experimental study of a water vapor compression heat pump with very high temperature output[J]. Journal of Engineering Thermophysics, 2021, 42(4):833-840. | |
[16] | 孟静惟, 贾玮, 张慧文, 等. “太阳能光伏+”多场景应用助力应对气候变化[J]. 中华环境, 2021(S1):44-47. |
MENG Jingwei, JIA Wei, ZHANG Huiwen, et al. "Solar photovoltaic +"multi scenario application helps to cope with climate change[J]. China Environment, 2021(S1): 44-47. | |
[17] | 王冬, 张可佳, 张洋. 国内外BIPV相关标准的发展现状[J]. 太阳能, 2021(5):12-19. |
WANG Dong, ZHANG Kejia, ZHANG Yang. Development status of BIPV related standards at home and abroad[J]. Solar Energy, 2021(5):12-19. | |
[18] | 莫一波, 杨灵, 黄柳燕, 等. 各种太阳能发电技术研究综述[J]. 东方电气评论, 2018, 32(1):78-82. |
MO Yibo, YANG Ling, HUANG Liuyan, et al. Review of various solar power generation technologies[J]. Dongfang Electric Review, 2018, 32(1):78-82. | |
[19] |
张金平, 周强, 王定美, 等. 太阳能光热发电技术及其发展综述[J]. 综合智慧能源, 2023, 45(2):44-52.
doi: 10.3969/j.issn.2097-0706.2023.02.006 |
ZHANG Jinping, ZHOU Qiang, WANG Dingmei, et al. Review on solar thermal power generation technologies and their development[J]. Integrated Intelligent Energy, 2023, 45(2):44-52.
doi: 10.3969/j.issn.2097-0706.2023.02.006 |
|
[20] |
崔双双, 孙单勋. 分工况下风电机组各变量相关性研究[J]. 综合智慧能源, 2022, 44(12):49-55.
doi: 10.3969/j.issn.2097-0706.2022.12.007 |
CUI Shuangshuang, SUN Shanxun. Study on the correlation of wind turbine variables under different conditions[J]. Integrated Intelligent Energy, 2022, 44(12):49-55.
doi: 10.3969/j.issn.2097-0706.2022.12.007 |
|
[21] | 刘晓辉, 高人杰, 薛宇. 浮式风力发电机组现状及发展趋势综述[J]. 分布式能源, 2020, 5(3):39-46. |
LIU Xiaohui, GAO Renjie, XUE Yu. Current situation and future development trend of floating offshore wind turbine[J]. Distributed Energy, 2020, 5(3):39-46. | |
[22] | 许国东, 叶杭冶, 解鸿斌. 风电机组技术现状及发展方向[J]. 中国工程科学, 2018, 20(3):44-50. |
XU Guodong, YE Hangye, XIE Hongbin. The current state and future development of wind turbine technology[J]. Strategic Study of CAE, 2018, 20(3):44-50. | |
[23] | 王月普. 风力发电现状与发展趋势分析[J]. 电力设备管理, 2020(11):21-22. |
WANG Yuepu. Analysis of current situation and development trend of wind power generation[J]. Power Equipment Management, 2020(11):21-22. | |
[24] |
雷超, 李韬. 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术, 2021, 42(2):207-217.
doi: 10.12096/j.2096-4528.pgt.20015 |
LEI Chao, LI Tao. Key technologies and development status of hydrogen energy utilization under the background of carbon neutrality[J]. Power Generation Technology, 2021, 42(2):207-217.
doi: 10.12096/j.2096-4528.pgt.20015 |
|
[25] | SERNA A. Evaluation of a long term system coupled with a short term system of a hydrogen-based microgrid[C]//International Renewable Energy Congress(IREC),Amman,Jordan, 2017:1-6. |
[26] | 符冠云. 氢能在我国能源转型中的地位和作用[J]. 中国煤炭, 2019, 45(10):15-21. |
FU Guanyun. The status and role of hydrogen energy in china's energy transition[J]. China Coal, 2019, 45(10):15-21. | |
[27] | 肖陆飞, 哈云, 孟飞, 等. 生物质气化技术研究与应用进展[J]. 现代化工, 2020, 40(12):68-72,76. |
XIAO Lufei, HA Yun, MENG Fei, et al. Research and application progress on biomass gasification technologies[J]. Modern Chemical Industry, 2020, 40(12):68-72,76. | |
[28] |
SUN H, WU C. Autothermal CaO looping biomass gasification for renewable syngas production[J]. Environmental Science & Technology, 2019, 53(15):9298-9305.
doi: 10.1021/acs.est.9b01527 |
[29] |
刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6):59-65.
doi: 10.3969/j.issn.2097-0706.2023.06.008 |
LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants[J]. Integrated Intelligent Energy, 2023, 45(6):59-65.
doi: 10.3969/j.issn.2097-0706.2023.06.008 |
|
[30] | 黄俊玮, 谭建成, 文泓铸. LCC-MMC型混合直流输电系统综述[J]. 电气开关, 2019, 57(5):1-5,10. |
HUANG Junwei, TAN Jiancheng, WEN Hongzhu. A review on LCC-MMC hybrid HVDC system[J]. Electric Switcher, 2019, 57(5):1-5,10. | |
[31] | 徐政, 王世佳, 李宁璨, 等. 适用于远距离大容量架空线路的LCC-MMC串联混合型直流输电系统[J]. 电网技术, 2016, 40(1):55-63. |
XU Zheng, WANG Shijia, LI Ningcan, et al. A LCC and MMC series hybrid HVDC topology suitable for bulk power overhead line transmission[J]. Power System Technology, 2016, 40(1):55-63. | |
[32] | 肖立业, 林良真. 超导输电技术发展现状与趋势[J]. 电工技术学报, 2015, 30(7):1-9. |
XIAO Liye, LIN Liangzhen. Status quo and trends of superconducting power transmission technology[J]. Transactions of China Electrotechnical Society, 2015, 30(7):1-9. | |
[33] | 曾竞, 韩杰, 张国强, 等. 区域供冷(热)管网优化技术及研究进展[J]. 煤气与热力, 2014, 34(12):22-26. |
ZENG Jing, HAN Jie, ZHANG Guoqiang, et al. Optimization technologies and research progress of district cooling and heating networks[J]. Gas & Heat, 2014, 34(12):22-26. | |
[34] | 李建林, 李光辉, 马速良, 等. 氢能储运技术现状及其在电力系统中的典型应用[J]. 现代电力, 2021, 38(5):535-545. |
LI Jianlin, LI Guanghui, MA Suliang, et al. An overview on hydrogen energy storage and transportation technology and its typical application in power system[J]. Modern Electric Power, 2021, 38(5):535-545. | |
[35] | 李敬法, 苏越, 张衡, 等. 掺氢天然气管道输送研究进展[J]. 天然气工业, 2021, 41(4):137-152. |
LI Jingfa, SU Yue, ZHANG Heng, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas[J]. Natural Gas Industry, 2021, 41(4):137-152. | |
[36] |
陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9):4806-4814.
doi: 10.16085/j.issn.1000-6613.2021-0162 |
CHEN Xiaolu, LIU Xiaomin, WANG Juan, et al. Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical Industry and Engineering Progress, 2021, 40(9):4806-4814.
doi: 10.16085/j.issn.1000-6613.2021-0162 |
|
[37] | 缪平, 姚祯, LEMMON J, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3):670-678. |
MIAO Ping, YAO Zhen, LEMMON J, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3):670-678. | |
[38] | 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9):2746-2771. |
JIANG Zhu, ZOU Boyang, CONG Lin, et al. Research progress and prospects of thermal energy storage technology[J]. Energy Storage Science and Technology, 2022, 11(9):2746-2771. | |
[39] |
FURAT D, MARTIN A, SHAFIULLAH G. Hydrogen production for energy:An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7):3847-3869.
doi: 10.1016/j.ijhydene.2019.12.059 |
[40] | 张新开. 长三角地区办公建筑零能耗技术策略的全生命周期经济性研究[D]. 南京: 东南大学, 2019. |
ZHANG Xinkai. Life cycle economic study on zero energy consumption technology strategies for office buildings in the yangtze river delta region[D]. Nanjing: Southeast University, 2019. | |
[41] |
薛溟枫, 毛晓波, 肖浩, 等. 基于改进深度Q网络算法的多园区综合能源系统能量管理方法[J]. 电力建设, 2022, 43(12):83-93.
doi: 10.12204/j.issn.1000-7229.2022.12.009 |
XUE Mingfeng, MAO Xiaobo, XIAO Hao, et al. Energy management method for multi-park integrated energy systems based on improved deep qnetwork algorithm[J]. Electric Power Construction, 2022, 43(12):83-93.
doi: 10.12204/j.issn.1000-7229.2022.12.009 |
|
[42] |
陈以明, 李治. 智慧能源发展方向及趋势分析[J]. 动力工程学报, 2020, 40(10):852-858,864.
doi: 10.19805/j.cnki.jcspe.2020.10.012 |
CHEN Yiming, LI Zhi. Analysis on the development trend and features of smart energy sources[J]. Journal of Chinese Society of Power Engineering, 2020, 40(10):852-858,864.
doi: 10.19805/j.cnki.jcspe.2020.10.012 |
|
[43] | 张政林, 张惠娟, 孙文治, 等. 基于改进旗鱼算法的综合能源系统能量管理[J]. 电力系统保护与控制, 2022, 50(22):142-151. |
ZHANG Zhenglin, ZHANG Huijuan, SUN Wenzhi, et al. Energy management of integrated energy systems based on improved sailfish algorithm[J]. Power System Protection and Control, 2022, 50(22),142-151. | |
[44] | 魏彤. “十四五”时期能源综合利用与智慧化转型探析[J]. 中国工程咨询, 2020(9):57-61. |
WEI Tong. Analysis of energy comprehensive utilization and intelligent transformation during the 14th five year plan period[J]. Chinese Engineering Consultants, 2020(9):57-61. | |
[45] | 陈烈. 低碳发展视角下的大型现代园区智慧化建设研究[J]. 建筑科技, 2020, 4(6):33-36. |
CHEN Lie. Smart huge industry park development by from low-carbon perspective[J]. Build Technology, 2020, 4(6):33-36. | |
[46] | 黄清. 发展智慧能源是顺应能源大势之道[J]. 中国能源, 2018, 40(12):14-16. |
HUANG Qing. Developing smart energy is the way to adapt to the energy trend[J]. Energy of China, 2018, 40(12):14-16. | |
[47] |
王宇波, 全贞花, 靖赫然, 等. 多能互补协同蓄能系统热力学分析与运行优化[J]. 化工学报, 2021, 72(5):2474-2483,2906.
doi: 10.11949/0438-1157.20201112 |
WANG Yubo, QUAN Zhenhua, JING Heran, et al. Thermodynamic analysis and operational optimization of multi-energy complementary cooperative energy storage systems[J]. Journal of Chemical Engineering, 2021, 72(5):2474-2483,2906. | |
[48] |
GUO L, LIU W, CAI J, et al. A two-stage optimal planning and design method for combined cooling, heat and power microgrid system[J]. Energy Conversion and Management, 2013, 74:433-445.
doi: 10.1016/j.enconman.2013.06.051 |
[49] |
BARATI F, SEIFI H, SEPASIAN M S, et al. Multi-period integrated framework of generation,transmission,and natural gas grid expansion planning for large-scale systems[J]. IEEE Transactions on Power Systems, 2015, 30(5):2527-2537.
doi: 10.1109/TPWRS.2014.2365705 |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 刘涛, 李伟华, 汤熠. 综合智慧能源系统典型构架网络安全防护研究[J]. 综合智慧能源, 2024, 46(5): 81-90. |
[3] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[4] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
[5] | 陈晓英, 楼继开, 邱亚鸣, 胡静, 陆裔晨, 岑垚, 雷顶. 光储协同综合智慧能源站自动功率控制系统研究[J]. 综合智慧能源, 2023, 45(9): 77-85. |
[6] | 刘天阳, 高亚静, 谢典, 赵良. 功能型零碳园区建设路径分析[J]. 综合智慧能源, 2023, 45(8): 44-52. |
[7] | 胡开永, 刘峰, 吴秀杰, 胡芸清, 郑怡, 田绅. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71. |
[8] | 王永真, 韩艺博, 韩恺, 韩俊涛, 宋阔, 张兰兰. 基于知识图谱的数据中心综合能源系统研究综述[J]. 综合智慧能源, 2023, 45(7): 1-10. |
[9] | 李宜哲, 王丹, 贾宏杰, 周天烁, 曹逸滔, 张帅, 刘佳委. 综合能源系统能量枢纽多样性建模和典型适用性研究[J]. 综合智慧能源, 2023, 45(7): 22-29. |
[10] | 刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6): 59-65. |
[11] | 赵国涛, 钱国明, 孙艳兵, 丁泉, 朱海东. 碳逸会计在综合能源系统低碳性评价中的应用[J]. 综合智慧能源, 2023, 45(6): 73-80. |
[12] | 刘子祺, 苏婷婷, 何佳阳, 王裕. 基于多目标粒子群算法的配电网储能优化配置研究[J]. 综合智慧能源, 2023, 45(6): 9-16. |
[13] | 周舒心, 范怀林, 胡勋. 生物质基碳材料制备及其在超级电容器电极材料中的应用[J]. 综合智慧能源, 2023, 45(5): 1-12. |
[14] | 范德锴, 付洁, 刘洋, 周春宝, 代建军. 纤维素热解制备高值化学品的研究综述[J]. 综合智慧能源, 2023, 45(5): 24-31. |
[15] | 李敏霞, 侯焙然, 王派, 董丽玮, 田华. 二氧化碳跨临界循环热泵的应用与发展[J]. 综合智慧能源, 2023, 45(4): 12-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||