综合智慧能源 ›› 2025, Vol. 47 ›› Issue (10): 26-33.doi: 10.3969/j.issn.2097-0706.2025.10.003
陈袁(
), 郭潇涵, 王廷鉴, 徐佩芸, 陈鹏, 王迪, 邓良胜
收稿日期:2024-06-27
修回日期:2024-08-13
出版日期:2024-10-14
作者简介:陈袁(1992),男,工程师,硕士,从事综合智慧能源解决方案设计、智慧管理平台等方面的研究,huadianyuan@163.com。
基金资助:
CHEN Yuan(
), GUO Xiaohan, WANG Tingjian, XU Peiyun, CHEN Peng, WANG Di, DENG Liangsheng
Received:2024-06-27
Revised:2024-08-13
Published:2024-10-14
Supported by:摘要:
针对以天然气为燃料、以合同能源管理为运营模式的高温磷酸燃料电池三联供系统经济性问题,基于瞬时系统模拟程序(Trnsys)对南方某三甲医院进行容量优化配置和经济性分析。研究表明,在充分挖掘冷、热、电需求后,年发电小时数达6 000,系统自耗电率约为5%,净发电效率为40.9%,能源综合利用率达75%,目前进口设备价格约1.2 万元/kW,系统总投资约为6 900万元,项目投资回收期为18.73年,需大力补贴才能实现示范落地。系统日常处于较高负荷率,如遇停电,系统能够在不间断电源提供的过渡时间内迅速爬升负荷,作为重要负荷的保障电源,为医院节省柴油发电机房投资约250万元。结合其他类型燃料电池国产化进程,若磷酸燃料电池造价降至0.6 万元/kW,项目全投资收益率将达5%以上,在低息贷款条件下,此类项目将成为经济性良好的清洁、高效分布式供能新形式。
中图分类号:
陈袁, 郭潇涵, 王廷鉴, 徐佩芸, 陈鹏, 王迪, 邓良胜. 基于磷酸燃料电池的三联供系统经济性测算及价格成本分析[J]. 综合智慧能源, 2025, 47(10): 26-33.
CHEN Yuan, GUO Xiaohan, WANG Tingjian, XU Peiyun, CHEN Peng, WANG Di, DENG Liangsheng. Economic calculation and price cost analysis of the trigeneration system based on phosphoric acid fuel cells[J]. Integrated Intelligent Energy, 2025, 47(10): 26-33.
表5
固定资产总投资组成
| 项目 | 设备购置费/ 万元 | 建安工程费/ 万元 | 其他 费用/ 万元 | 合计/ 万元 | 占比/ % | |
|---|---|---|---|---|---|---|
| 设备及安装 工程 | 发电设备 | 4 625.83 | 302.99 | 4 928.82 | 72.78 | |
| 开关站变配电设备 | 59.75 | 119.96 | 179.71 | 2.65 | ||
| 控制保护设备 | 30.64 | 10.01 | 40.65 | 0.60 | ||
| 其他设备 | 5.11 | 5.97 | 11.08 | 0.16 | ||
| 建安 工程 | 发电设备基础工程 | 87.61 | 87.61 | 1.29 | ||
| 其他建筑工程 | 3.00 | 3.00 | 0.04 | |||
| 其他费用(概算) | 1 388.72 | 1 388.72 | 20.51 | |||
| 基本预备费 | 132.79 | 132.79 | 1.96 | |||
| [1] | 滕梓源, 张海明, 吕泽伟, 等. 分布式固体氧化物燃料电池发电系统发展现状与展望[J]. 中国电机工程学报, 2023, 43(20): 7959-7973. |
| TENG Ziyuan, ZHANG Haiming, LYU Zewei, et al. Development status and prospect of distributed solid oxide fuel cell power generation system[J]. Proceedings of the CSEE, 2023, 43(20): 7959-7973. | |
| [2] | 彭黎菊, 李爽, 史翊翔, 等. 首都住宅建筑燃料电池热电联供系统建模与能量供需分析[J/OL]. 中国电机工程学报:1-13(2024-03-21)[2024-06-23].https://link.cnki.net/doi/10.13334/j.0258-8013.pcsee.232278. |
| PENG Liju, LI Shuang, SHI Yixiang, et al. Simulation study of fuel cell chp system and energy demands analysis for residential buildings in Beijing[J/OL]. Proceedings of the CSEE:1-13(2024-03-21)[2024-06-23].https://link.cnki.net/doi/10.13334/j.0258-8013.pcsee.232278. | |
| [3] | REN Hongbo, GAO Weijun. Economic and environmental evaluation of micro CHP systems with different operating modes for residential buildings in Japan[J]. Energy and Buildings, 2010, 42(6):853-861. |
| [4] | SLEITI A K, AL-AMMARI W A, ARSHAD R, et al. Energetic,economic, and environmental analysis of solid oxide fuel cell-based combined cooling, heating, and power system for cancer care hospital[J]. Building Simulation, 2022, 15(8):1437-1454. |
| [5] | 王子良. 微型燃料电池热电联产系统模拟及制氢系统研发[D]. 广州: 华南理工大学, 2012. |
| WANG Ziliang. Simulation of micro fuel cell cogeneration system and development of hydrogen production system[D]. Guangzhou: South China University of Technology, 2012. | |
| [6] | 王丽娜. 基于云模型模糊评判的电网大停电风险评估方法研究[D]. 北京: 华北电力大学, 2020. |
| WANG Lina. Research on risk assessment method of power grid blackout based on cloud model fuzzy evaluation[D]. Beijing: North China Electric Power University, 2020. | |
| [7] | 张在宝. 电网规划方案的大停电社会综合损失评估[D]. 北京: 华北电力大学, 2017. |
| ZHANG Zaibao. Social comprehensive loss evaluation of power grid planning scheme in blackout[D]. Beijing: North China Electric Power University, 2017. | |
| [8] | 中国航空规划设计研究总院有限公司. 工业与民用供配电设计手册[M]. 第4版. 北京: 中国水利水电出版社, 2004. |
| [9] | 韩志攀, 贾新聪, 宋逶迤, 等. 基于DeST建筑围护结构能耗及碳排放测算分析[J]. 建筑结构, 2023, 53(S2): 413-417. |
| HAN Zhipan, JIA Xincong, SONG Weiyi, et al. Calculation and analysis of energy consumption and carbon emission of building envelope based on DeST[J]. Building Structure, 2023, 53(S2): 413-417. | |
| [10] | 周博坤. 夏热冬冷地区医院建筑空调系统冷负荷预测与供冷季运行优化[D]. 武汉: 华中科技大学, 2022. |
| ZHOU Bokun. Cooling load prediction and operation optimization of air conditioning system in hospital buildings in hot summer and cold winter areas[D]. Wuhan: Huazhong University of Science and Technology, 2022. | |
| [11] | 杨恒岳, 刘青荣, 阮应君. 基于k-means聚类算法的分布式能源系统典型日冷热负荷选取[J]. 热力发电, 2021, 50(3): 84-90. |
| YANG Hengyue, LIU Qingrong, RUAN Yingjun. Selection of typical daily cooling and heating load of CCHP system based on k-means clustering algorithm[J]. Thermal Power Generation, 2021, 50(3): 84-90. | |
| [12] | 赵锂, 王睿, 王耀堂, 等. 建筑集中生活热水水质保障与节能节水关键技术[J]. 江苏建筑, 2023(5): 1-5. |
| ZHAO Li, WANG Rui, WANG Yaotang, et al. Application of key technologies of water quality assurance and energy saving for centralized domestic hot water in buildings[J]. Jiangsu Construction, 2023(5): 1-5. | |
| [13] | 郑伟. 低谷电制备生活热水设计研究[J]. 给水排水, 2024, 60(2): 102-106. |
| ZHENG Wei. Study on the design of domestic hot water produced by low-valley electricity[J]. Water & Wastewater Engineering, 2024, 60(2): 102-106. | |
| [14] | 杨冬锋, 生赫, 郝中华, 等. 计及运行灵活性的综合能源系统源荷两侧优化调度[J/OL]. 电源学报:1-16(2024-01-26)[2024-06-23].https://link.cnki.net/urlid/12.1420.TM.20240125.1623.004. |
| YANG Dongfeng, SHENG He, HAO Zhonghua, et al. Optimal scheduling on both sides of the source load for integrated energy systems with operational flexibility[J/OL]. Journal of Power Supply:1-16(2024-01-26)[2024-06-23].https://link.cnki.net/urlid/12.1420.TM.20240125.1623.004. | |
| [15] | 张斌, 董福海, 章荣兵, 等. 南方某医院扩建项目冷热电联产系统方案设计研究[J]. 暖通空调, 2023, 53(7): 99-105. |
| ZHANG Bin, DONG Fuhai, ZHANG Rongbing, et al. Research on CCHP scheme design for a hospital expansion project in Southern China[J]. Heating Ventilating & Air Conditioning, 2023, 53(7): 99-105. | |
| [16] |
孙健, 秦宇, 郝俊红, 等. 基于工业余热的高温空气源耦合热泵循环性能分析[J]. 综合智慧能源, 2023, 45(7): 40-47.
doi: 10.3969/j.issn.2097-0706.2023.07.005 |
|
SUN Jian, QIN Yu, HAO Junhong, et al. Performance analysis on high temperature air source heat pump coupling cycle based on industrial waste heat[J]. Integrated Intelligent Energy, 2023, 45(7): 40-47.
doi: 10.3969/j.issn.2097-0706.2023.07.005 |
|
| [17] | 荣繁华, 纪少波, 于泽庭, 等. 基于LNG冷能利用的高温质子交换膜燃料电池多联供系统性能研究[J]. 热力发电, 2022, 51(11): 107-114. |
| RONG Fanhua, JI Shaobo, YU Zeting, et al. Performance study of high-temperature proton exchange membrane fuel cell multi-generation system based on LNG cold energy utilization[J]. Thermal Power Generation, 2022, 51(11): 107-114. | |
| [18] | 许余浩. 固体氧化物燃料电池冷热电联供系统运行机制研究[D]. 武汉: 华中科技大学, 2022. |
| XU Yuhao. Study on operation mechanism of combined cooling, heating and power system of solid oxide fuel cell[D]. Wuhan: Huazhong University of Science and Technology, 2022. | |
| [19] |
韩旭, 周峻毅, 王小东, 等. 基于穷举搜索法的城市建筑CCHP系统优化配置[J]. 动力工程学报, 2023, 43(7): 923-929.
doi: 10.19805/j.cnki.jcspe.2023.07.015 |
|
HAN Xu, ZHOU Junyi, WANG Xiaodong, et al. Optimal configuration of urban building CCHP system based on exhaustive search method[J]. Journal of Chinese Society of Power Engineering, 2023, 43(7): 923-929.
doi: 10.19805/j.cnki.jcspe.2023.07.015 |
|
| [20] |
罗丽琦, 王月, 钟海军, 等. 固体氧化物燃料电池热电联供系统设计[J]. 综合智慧能源, 2022, 44(8): 25-32.
doi: 10.3969/j.issn.2097-0706.2022.08.002 |
|
LUO Liqi, WANG Yue, ZHONG Haijun, et al. Design of the CHP system integrated with SOFC[J]. Integrated Intelligent Energy, 2022, 44(8): 25-32.
doi: 10.3969/j.issn.2097-0706.2022.08.002 |
|
| [21] | 崔全胜, 白晓民, 董伟杰, 等. 用户侧综合能源系统规划运行联合优化[J]. 中国电机工程学报, 2019, 39(17): 4967-4981, 5279. |
| CUI Quansheng, BAI Xiaomin, DONG Weijie, et al. Joint optimization of planning and operation in user-side multi-energy systems[J]. Proceedings of the CSEE, 2019, 39(17): 4967-4981, 5279. | |
| [22] | 张蓓, 郗厚站, 康家宁. 天然气冷热电三联供项目发电盈亏平衡电价分析[J]. 建筑科学, 2023, 39(4): 201-204. |
| ZHANG Bei, CHI Houzhan, KANG Jianing. Analysis of break-even electricity price for power generation of a natural gas combined cooling, heating, and power project[J]. Building Science, 2023, 39(4): 201-204. | |
| [23] | 华惠莲, 王军, 陈玉柱, 等. 天然气冷热电联供系统热经济优化研究[J]. 热能动力工程, 2023, 38(2): 26-32. |
| HUA Huilian, WANG Jun, CHEN Yuzhu, et al. Thermal-economic optimization of natural gas combined cooling heating and power system[J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(2): 26-32. | |
| [24] |
王怀斌. 基于资源与电价的分布式光伏项目经济性研究[J]. 经济地理, 2023, 43(12): 135-142.
doi: 10.15957/j.cnki.jjdl.2023.12.013 |
|
WANG Huaibin. Economic evaluation of distributed photovoltaic power plants: Based on regional solar resources and electricity prices[J]. Economic Geography, 2023, 43(12): 135-142.
doi: 10.15957/j.cnki.jjdl.2023.12.013 |
|
| [25] |
张力菠, 葛禄璐, 陈昌奇, 等. 电价补贴退坡趋势下户用光伏发展演化的仿真研究[J]. 系统仿真学报, 2021, 33(6): 1397-1405.
doi: 10.16182/j.issn1004731x.joss.20-0066 |
|
ZHANG Libo, GE Lulu, CHEN Changqi, et al. Simulation on the development of residential distributed photovoltaic power generation under the declining trend of feed-in-tariff[J]. Journal of System Simulation, 2021, 33(6):1397-1405.
doi: 10.16182/j.issn1004731x.joss.20-0066 |
|
| [26] |
姜宇, 许文秀, 石建磊, 等. 融合可再生能源的分布式天然气上网电价定价机制[J]. 电力建设, 2018, 39(3): 131-136.
doi: DOI: 10.3969/j.issn.1000-7229.2018.03.017 |
|
JIANG Yu, XU Wenxiu, SHI Jianlei, et al. Feed-in pricing mechanism of distributed natural gas generation integrating renewable energy[J]. Electric Power Construction, 2018, 39(3): 131-136.
doi: DOI: 10.3969/j.issn.1000-7229.2018.03.017 |
|
| [27] | 中国汽车工程学会. 世界氢能与燃料电池汽车产业发展报告[M].北京:机械工业出版社:2019. |
| [28] | 张良, 刘梦娇, 梁家珍, 等. 宽温域质子交换膜在燃料电池中的研究进展[J]. 膜科学与技术, 2023, 43(6):212-222. |
| ZHANG Liang, LIU Mengjiao, LIANG Jiazhen, et al. Advances in wide-temperature-range proton exchange membranes for fuel cells[J]. Membrane Science and Technology, 2023, 43(6):212-222. |
| [1] | 赵大周, 谢玉荣, 张钟平, 邓睿锋, 刘丽丽. 300 MW燃煤供热机组熔盐储热系统设计及经济性分析[J]. 综合智慧能源, 2024, 46(9): 45-52. |
| [2] | 白章, 郝文杰, 李琦, 郝洪亮, 温彩凤, 郭苏, 黄贤坤. 基于全生命周期评价的风光制氢综合系统容量配置优化研究[J]. 综合智慧能源, 2024, 46(10): 1-11. |
| [3] | 冯乐军, 付志浩, 刘锋, 龚雨桐, 李艺敏, 韩东江, 隋军. 技术-经济因素对天然气分布式能源系统经济性影响分析[J]. 综合智慧能源, 2022, 44(10): 65-70. |
| [4] | 赵永亮, 刘明, 王朝阳, 孙瑞强, 种道彤, 严俊杰. 基于固体填料床的泵热储能系统热-经济性分析[J]. 华电技术, 2021, 43(7): 1-8. |
| [5] | 朱海东, 郝浩, 郑剑, 张庭玉, 陈志凯, 胡恩俊. 基于冷热电多能互补的园区综合能源系统设计[J]. 华电技术, 2021, 43(4): 34-38. |
| [6] | 周楠, 梁秀进, 李壮. 燃煤机组白色烟羽治理方案经济性分析[J]. 华电技术, 2020, 42(9): 63-68. |
| [7] | 江婷1,2,徐静静1,2,马琴1,2,余莉1,2. 分布式能源系统低温烟气余热利用经济性分析[J]. 华电技术, 2019, 41(5): 46-49. |
| [8] | 吴少璟,周长友,陈彬,陆刚. 固定可调支架系统调节策略改进分析[J]. 华电技术, 2019, 41(4): 56-58. |
| [9] | 孙思宇1,于成琪2,孙涛3,李新建3,卫奕4,谭敬波2,张军涛2. 冷热电三联供分布式能源系统研究进展[J]. 华电技术, 2019, 41(11): 26-31. |
| [10] | 韩峰1,张衍国2,严矫平1,丛堃林2. 综合能源服务业务和合作模式[J]. 华电技术, 2019, 41(11): 1-4. |
| [11] | 李利. 生物质沼气发电的利用模式及效益分析[J]. 华电技术, 2018, 40(12): 48-49. |
| [12] | 王学勤1,江婷2,徐静静2,邓亚男2,胡永锋2. 天然气分布式能源站蓄冷方案研究及应用[J]. 华电技术, 2018, 40(11): 72-76. |
| [13] | 陈靖1,2,江婷1,2,徐静静1,2,胡永锋1,2,李跃1,刘广宇1,2 . 天然气冷热电蒸汽联产系统经济性分析[J]. 华电技术, 2018, 40(11): 68-71. |
| [14] | 杨松. 燃气冷热电三联供技术与地源热泵技术相结合的应用[J]. 华电技术, 2016, 38(7): 67-69. |
| [15] | 刘保松,刘晓光,刘庆超. 我国光伏发电经济性分析[J]. 华电技术, 2015, 37(6): 72-73. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

