| [1] |
谢善益, 仲卫, 杨强, 等. 台风条件下含混合电氢储能的海上风电场并网运行智能控制方法[J]. 电机与控制应用, 2024, 51(3): 49-59.
|
|
XIE Shanyi, ZHONG Wei, YANG Qiang, et al. Intelligent control method for grid-connected operation of offshore wind farm with hybrid electric hydrogen storage under typhoon conditions[J]. Electric Machines & Control Application, 2024, 51(3): 49-59.
|
| [2] |
吴志程, 朱俊杰, 许金, 等. 电磁发射用“锂电池-超级电容”混合储能技术研究综述[J]. 电机与控制应用, 2021, 48(3): 1-6.
|
|
WU Zhicheng, ZHU Junjie, XU Jin, et al. Review of "lithium battery-supercapacitor" hybrid energy storage technology for electromagnetic launch[J]. Electric Machines & Control Application, 2021, 48(3): 1-6.
|
| [3] |
张保明, 陈洁, 付菊霞, 等. 基于小波包混合储能系统的风功率波动控制策略[J]. 电机与控制应用, 2020, 47(3): 75-80, 94.
|
|
ZHANG Baoming, CHEN Jie, FU Juxia, et al. Control strategy of wind power fluctuation based on wavelet packet hybrid energy storage system[J]. Electric Machines & Control Application, 2020, 47(3): 75-80, 94.
|
| [4] |
万明忠, 王元媛, 李峻, 等. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31.
doi: 10.3969/j.issn.2097-0706.2023.09.004
|
|
WAN Mingzhong, WANG Yuanyuan, LI Jun, et al. Research progress and prospect of compressed air energy storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 26-31.
doi: 10.3969/j.issn.2097-0706.2023.09.004
|
| [5] |
LI Y, LI Y, LIU Y N, et al. Compressed air energy storage in aquifers: Basic principles, considerable factors, and improvement approaches[J]. Reviews in Chemical Engineering, 2021, 37(5): 561-584.
doi: 10.1515/revce-2019-0015
|
| [6] |
FAN J Y, LIU W, JIANG D Y, et al. Thermodynamic and applicability analysis of a hybrid CAES system using abandoned coal mine in China[J]. Energy, 2018, 157:31-44.
doi: 10.1016/j.energy.2018.05.107
|
| [7] |
薛皓白, 张新敬, 陈海生, 等. 微型压缩空气储能系统释能过程分析[J]. 工程热物理学报, 2014, 35(10): 1923-1929.
|
|
XUE Haobai, ZHANG Xinjing, CHEN Haisheng, et al. Analysis of energy release process of micro-compressed air energy storage systems[J]. Journal of Engineering Thermophysics, 2014, 35(10): 1923-1929.
|
| [8] |
陈辉, 李文, 盛勇, 等. CAES释能过程多工况动态仿真及效率分析[J]. 动力工程学报, 2023, 43(7): 869-876.
doi: 10.19805/j.cnki.jcspe.2023.07.008
|
|
CHEN Hui, LI Wen, SHENG Yong, et al. Multi-condition dynamic simulation and efficiency analysis of CAES energy release process[J]. Journal of Chinese Society of Power Engineering, 2023, 43(7): 869-876.
doi: 10.19805/j.cnki.jcspe.2023.07.008
|
| [9] |
GUO H, XU Y J, ZHANG Y, et al. Off-design performance and operation strategy of expansion process in compressed air energy systems[J]. International Journal of Energy Research, 2019, 43(1): 475-490.
doi: 10.1002/er.v43.1
|
| [10] |
李扬, 张新敬, 宋健斐, 等. 压缩空气储能系统释能过程动态调控[J]. 储能科学与技术, 2021, 10(5): 1514-1523.
doi: 10.19799/j.cnki.2095-4239.2021.0337
|
|
LI Yang, ZHANG Xinjing, SONG Jianfei, et al. Dynamic regulation and control of the discharge process in compressed air energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1514-1523.
doi: 10.19799/j.cnki.2095-4239.2021.0337
|
| [11] |
冯庭勇, 钟晶亮, 文贤馗, 等. 先进绝热压缩空气储能发电系统参与调频辅助服务控制优化方法[J]. 热力发电, 2022, 51(5): 136-141.
|
|
FENG Tingyong, ZHONG Jingliang, WEN Xiankui, et al. Optimization method of AA-CAES power generation system participating in frequency modulation auxiliary service control[J]. Thermal Power Generation, 2022, 51(5): 136-141.
|
| [12] |
张彪, 李阳海, 曹泉. 压缩空气储能系统建模、仿真和控制研究综述[J]. 湖北电力, 2022, 46(3): 1-6.
|
|
ZHANG Biao, LI Yanghai, CAO Quan. Review on modeling, simulation and control of compressed air energy storage system[J]. Hubei Electric Power, 2022, 46(3): 1-6.
|
| [13] |
周珊, 张伟杰, 许丹宁, 等. 基于模糊二阶高通滤波的光伏混合储能直流微网的功率分配控制[J]. 电机与控制应用, 2025, 52(1): 52-63.
|
|
ZHOU Shan, ZHANG Weijie, XU Danning, et al. Power allocation control of photovoltaic hybrid energy storage DC microgrid based on fuzzy second-order high-pass filtering[J]. Electric Machines & Control Application, 2025, 52(1): 52-63.
|
| [14] |
李震, 王斌, 牟雪鹏, 等. 基于瞬时功率镜像补偿的斜坡式重力储能系统功率平滑控制策略[J]. 电机与控制应用, 2024, 51(5): 12-20.
|
|
LI Zhen, WANG Bin, MOU Xuepeng, et al. Power smoothing control strategy for slope gravity energy storage system based on instantaneous power mirror compensation[J]. Electric Machines & Control Application, 2024, 51(5): 12-20.
|
| [15] |
ZHAO P, GAO L, WANG J F, et al. Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines[J]. Renewable Energy, 2016, 85: 1164-1177.
doi: 10.1016/j.renene.2015.07.095
|
| [16] |
GUO H, XU Y J, ZHU Y L, et al. Thermal-mechanical coefficient analysis of adiabatic compressor and expander in compressed air energy storage systems[J]. Energy, 2021, 244:122993.
doi: 10.1016/j.energy.2021.122993
|
| [17] |
GUO H, XU Y J, ZHANG Y, et al. Off-design performance and an optimal operation strategy for the multistage compression process in adiabatic compressed air energy storage systems[J]. Applied Thermal Engineering, 2019, 149: 262-274.
doi: 10.1016/j.applthermaleng.2018.12.035
|
| [18] |
HAN Z H, GUO S C. Investigation of operation strategy of combined cooling, heating and power(CCHP) system based on advanced adiabatic compressed air energy storage[J]. Energy, 2018, 160: 290-308.
doi: 10.1016/j.energy.2018.07.033
|
| [19] |
MOZAYENI H, WANG X, NEGNEVITSKY M. Dynamic analysis of a low-temperature adiabatic compressed air energy storage system[J]. Journal of Cleaner Production, 2020, 276: 124323.
doi: 10.1016/j.jclepro.2020.124323
|
| [20] |
王宇轩, 郝宁, 赵峰, 等. 面向微网的源网荷储一体化功率分配策略研究[J]. 综合智慧能源, 2025, 47(8):58-67.
doi: 10.3969/j.issn.2097-0706.2025.08.007
|
|
WANG Yuxuan, HAO Ning, ZHAO Feng, et al. Research on integrated power allocation strategy of source-network-load-storage for microgrids[J]. Integrated Intelligent Energy, 2025, 47(8): 58-67.
doi: 10.3969/j.issn.2097-0706.2025.08.007
|
| [21] |
袁佳歆, 彭斌, 刘诺醇, 等. 一种新型高效电-热柔性可控风力发电制热设备[J]. 武汉大学学报(工学版), 2025, 58(8): 1331-1339.
|
|
YUAN Jiaxin, PENG Bin, LIU Nuochun, et al. A novel high-efficiency electric-to-heat flexible and controllable wind power generation and heating equipment[J]. Engineering Journal of Wuhan University, 2025, 58(8): 1331-1339.
|
| [22] |
朱志超, 崔森, 陈来军, 等. 基于改进模糊自适应的先进绝热压缩空气储能一次调频控制策略[J/OL]. 电网技术, 2024: 1-11(2024-10-29)[2025-08-01]. https://link.cnki.net/doi/10.13335/j.1000-3673.pst.2024.1403.
|
|
ZHU Zhichao, CUI Sen, CHEN Laijun, et al. Primary frequency modulation control strategy of advanced adiabatic compressed air energy storage based on improved fuzzy adaptive control[J/OL]. Power System Technology, 2024:1-11(2024-10-29)[2025-08-01]. https://link.cnki.net/doi/10.13335/j.1000-3673.pst.2024.1403.
|
| [23] |
李瑞. 源-网-荷先进绝热压缩空气储能灵活性建模及运行研究[D]. 北京: 清华大学, 2019.
|
|
LI Rui. Research on flexibility modeling and operation of source-grid-load advanced adiabatic compressed air energy storage[D]. Beijing: Tsinghua University, 2019.
|
| [24] |
胡雪如, 邢令利, 李原圆, 等. 基于Aspen Plus的等压压缩空气储能系统性能仿真及分析[J]. 综合智慧能源, 2024, 46(12): 72-80.
doi: 10.3969/j.issn.2097-0706.2024.12.009
|
|
HU Xueru, XING Lingli, LI Yuanyuan, et al. Performance simulation and analysis of an isobaric compressed air energy storage system based on Aspen Plus[J]. Integrated Intelligent Energy, 2024, 46(12): 72-80.
doi: 10.3969/j.issn.2097-0706.2024.12.009
|
| [25] |
杨大慧, 文贤馗, 钟晶亮, 等. AA-CAES系统释能过程安全减出力控制仿真分析[J]. 太阳能学报, 2023, 44(4): 283-289.
doi: 10.19912/j.0254-0096.tynxb.2021-1529
|
|
YANG Dahui, WEN Xiankui, ZHONG Jingliang, et al. Simulation analysis of runback conditions on energy release process of AA-CAES system[J]. Acta Energiae Solaris Sinica, 2023, 44(4): 283-289.
doi: 10.19912/j.0254-0096.tynxb.2021-1529
|
| [26] |
LI R X, WANG H R, ZHANG H R. Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage[J]. Renewable Energy, 2019, 138: 326-339.
doi: 10.1016/j.renene.2019.01.086
|
| [27] |
CALERO I, CANIZARES C A, BHATTACHARYA K. Compressed air energy storage system modeling for power system studies[J]. IEEE Transactions on Power Systems, 2019, 34(5):3359-3371.
doi: 10.1109/TPWRS.59
|