| [1] |
杨子艺, 胡姗, 徐天昊, 等. 面向碳中和的各国建筑运行能耗与碳排放对比研究方法及应用[J]. 气候变化研究进展, 2023, 19(6): 749-760.
|
|
YANG Ziyi, HU Shan, XU Tianhao, et al. Method and application of global building operation energy use and carbon emissions comparison in the context of carbon neutrality[J]. Climate Change Research, 2023, 19(6): 749-760.
|
| [2] |
LIU R X, KUANG J, GONG Q, et al. Principal component regression analysis with SPSS[J]. Computer Methods and Programs in Biomedicine, 2003, 71(2): 141-147.
doi: 10.1016/s0169-2607(02)00058-5
pmid: 12758135
|
| [3] |
吕岩, 潘毅群, 刘海静, 等. 冷热负荷预测在区域供能项目中的应用: 以上海西虹桥1号能源站为例[J]. 全球能源互联网, 2021, 4(2): 197-203.
|
|
LYU Yan, PAN Yiqun, LIU Haijing, et al. Application of cooling and heating load prediction for district energy supply: A case in west Hongqiao 1# energy station[J]. Journal of Global Energy Interconnection, 2021, 4(2): 197-203.
|
| [4] |
庄惟敏, 刘加平, 王建国, 等. 建筑碳中和的关键前沿基础科学问题[J]. 中国科学基金, 2023, 37(3): 348-352.
|
|
ZHUANG Weimin, LIU Jiaping, WANG Jianguo, et al. Key frontier basic scientific issues in building carbon neutrality[J]. Bulletin of National Natural Science Foundation of China, 2023, 37(3): 348-352.
|
| [5] |
LU C J, LI S H, LU Z J. Building energy prediction using artificial neural networks: A literature survey[J]. Energy and Buildings, 2022, 262: 111718.
doi: 10.1016/j.enbuild.2021.111718
|
| [6] |
ZHANG L, WEN J, LI Y F, et al. A review of machine learning in building load prediction[J]. Applied Energy, 2021, 285: 116452.
doi: 10.1016/j.apenergy.2021.116452
|
| [7] |
FATHI S, SRINIVASAN R, FENNER A, et al. Machine learning applications in urban building energy performance forecasting: A systematic review[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110287.
doi: 10.1016/j.rser.2020.110287
|
| [8] |
徐聪, 胡永锋, 张爱平, 等. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006
|
|
XU Cong, HU Yongfeng, ZHANG Aiping, et al. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening[J]. Integrated Intelligent Energy, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006
|
| [9] |
杨澜倩, 郭锦敏, 田慧丽, 等. 基于CNN-LSTM-Self attention的园区负荷多尺度预测研究[J]. 综合智慧能源, 2025, 47(2): 79-87.
doi: 10.3969/j.issn.2097-0706.2025.02.008
|
|
YANG Lanqian, GUO Jinmin, TIAN Huili, et al. Research on multi-scale load prediction in parks based on CNN-LSTM-Self attention[J]. Integrated Intelligent Energy, 2025, 47(2): 79-87.
doi: 10.3969/j.issn.2097-0706.2025.02.008
|
| [10] |
LU C J, LI S H, REDDY PENAKA S, et al. Automated machine learning-based framework of heating and cooling load prediction for quick residential building design[J]. Energy, 2023, 274: 127334.
doi: 10.1016/j.energy.2023.127334
|
| [11] |
WEI Z Q, ZHANG T W, YUE B, et al. Prediction of residential district heating load based on machine learning: A case study[J]. Energy, 2021, 231: 120950.
doi: 10.1016/j.energy.2021.120950
|
| [12] |
GAO T F, HAN X, WANG J, et al. Enhancing building energy efficiency: An integrated approach to predicting heating and cooling loads using machine learning and optimization algorithms[J]. Journal of Building Engineering, 2024, 98: 110759.
doi: 10.1016/j.jobe.2024.110759
|
| [13] |
GUO J X, YUN S N, MENG Y, et al. Prediction of heating and cooling loads based on light gradient boosting machine algorithms[J]. Building and Environment, 2023, 236: 110252.
doi: 10.1016/j.buildenv.2023.110252
|
| [14] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
doi: 10.1023/A:1010933404324
|
| [15] |
JIANG R, TANG W W, WU X B, et al. A random forest approach to the detection of epistatic interactions in case-control studies[J]. BMC Bioinformatics, 2009, 10(Suppl 1): S65.
doi: 10.1186/1471-2105-10-S1-S65
|
| [16] |
AHMAD M W, MOURSHED M, REZGUI Y. Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression[J]. Energy, 2018, 164: 465-474.
doi: 10.1016/j.energy.2018.08.207
|
| [17] |
MARANI A, NEHDI M L. Machine learning prediction of compressive strength for phase change materials integrated cementitious composites[J]. Construction and Building Materials, 2020, 265: 120286.
doi: 10.1016/j.conbuildmat.2020.120286
|
| [18] |
JOHN V, LIU Z, GUO C Z, et al. Real-time lane estimation using deep features and extra trees regression[M]//Image and Video Technology. Cham: Springer International Publishing, 2016: 721-733.
|
| [19] |
AHMAD M W, REYNOLDS J, REZGUI Y. Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees[J]. Journal of Cleaner Production, 2018, 203: 810-821.
doi: 10.1016/j.jclepro.2018.08.207
|
| [20] |
ALAM M S, AL-ISMAIL F S, HOSSAIN M S, et al. Ensemble machine-learning models for accurate prediction of solar irradiation in Bangladesh[J]. Processes, 2023, 11(3): 908.
doi: 10.3390/pr11030908
|
| [21] |
GUELMAN L. Gradient boosting trees for auto insurance loss cost modeling and prediction[J]. Expert Systems with Applications, 2012, 39(3): 3659-3667.
doi: 10.1016/j.eswa.2011.09.058
|
| [22] |
CHANG Y C, CHANG K H, WU G J. Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions[J]. Applied Soft Computing, 2018, 73: 914-920.
doi: 10.1016/j.asoc.2018.09.029
|
| [23] |
YUDANTAKA K, KIM J S, SONG H, et al. Dual deep learning networks based load forecasting with partial real-time information and its application to system marginal price prediction[J]. Energies, 2019, 13(1): 1-15.
doi: 10.3390/en13010001
|
| [24] |
GARDNER M W, DORLING S R. Artificial neural networks (the multilayer perceptron): A review of applications in the atmospheric sciences[J]. Atmospheric Environment, 1998, 32(14/15): 2627-2636.
doi: 10.1016/S1352-2310(97)00447-0
|
| [25] |
XIE Y H, UEDA Y, SUGIYAMA M, et al. A two-stage short-term load forecasting method using long short-term memory and multilayer perceptron[J]. Energies, 2021, 14(18): 5873.
doi: 10.3390/en14185873
|
| [26] |
杨丽洁, 邓振宇, 陈作双, 等. 基于MSCNN-BiGRU-MLP模型的公共建筑非侵入式负荷辨识[J]. 综合智慧能源, 2025, 47(3): 23-31.
doi: 10.3969/j.issn.2097-0706.2025.03.003
|
|
YANG Lijie, DENG Zhenyu, CHEN Zuoshuang, et al. Non-intrusive load identification for public buildings based on MSCNN-BiGRU-MLP model[J]. Integrated Intelligent Energy, 2025, 47(3): 23-31.
doi: 10.3969/j.issn.2097-0706.2025.03.003
|
| [27] |
刘艺娴, 王玉彬, 杨强. 基于门控图神经网络的高容错配电网状态估计方法[J]. 综合智慧能源, 2023, 45(6): 1-8.
doi: 10.3969/j.issn.2097-0706.2023.06.001
|
|
YLIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network[J]. Integrated Intelligent Energy, 2023, 45(6): 1-8.
doi: 10.3969/j.issn.2097-0706.2023.06.001
|
| [28] |
ATTALI J G, PAGÈS G. Approximations of functions by a multilayer perceptron: A new approach[J]. Neural Networks, 1997, 10(6): 1069-1081.
pmid: 12662500
|