综合智慧能源 ›› 2025, Vol. 47 ›› Issue (12): 73-80.doi: 10.3969/j.issn.2097-0706.2025.12.008

• 综合能源系统应用 • 上一篇    下一篇

基于树模型和神经网络的供热一次网负荷预测

闫京1(), 蒋泽龄2(), 关宝良1, 孟思宇1, 王凤龙1, 杨尚峰1, 杨众杨1, 熊亚选2,*()   

  1. 1.北京天岳恒房屋经营管理有限公司,北京 100032
    2.北京建筑大学 供热、供燃气、通风及空调工程北京市重点实验室,北京 100044
  • 收稿日期:2025-06-05 修回日期:2025-09-16 出版日期:2025-12-25
  • 通讯作者: * 熊亚选(1977),男,教授,博士,从事低碳储能和供热系统精准节能方面的研究,xiongyaxuan@bucea.edu.cn
  • 作者简介:闫京(1974),男,高级工程师,硕士,从事城镇供热运行管理方面的工作,tyhgongnuan@163.com
    蒋泽龄(2002),女,硕士生,从事储热材料设计开发和热物性提升方面的研究,876537897@qq.com
  • 基金资助:
    国家重点研发计划项目(2025YFE0118800)

Load prediction of primary heating networks based on tree models and neural networks

YAN Jing1(), JIANG Zeling2(), GUAN Baoliang1, MENG Siyu1, WANG Fenglong1, YANG Shangfeng1, YANG Zhongyang1, XIONG Yaxuan2,*()   

  1. 1. Beijing Tianyueheng Housing Management & Administration Company Limited, Beijing 100032, China
    2. Beijing Key Laboratory of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Received:2025-06-05 Revised:2025-09-16 Published:2025-12-25
  • Supported by:
    National Key R&D Program of China(2025YFE0118800)

摘要:

建筑热负荷的精准预测对于优化建筑能源系统的运行、降低能源消耗及实现节能目标具有至关重要的作用。运用机器学习(ML)算法进行预测能够有效克服传统方法的局限性,显著降低传统模拟分析的计算成本并提升系统能效。采用随机森林回归(RFR)、极端随机树回归(ETR)、梯度提升回归(GBR)、极端梯度提升回归(XGBR)及多层感知机(MLP) 5种回归模型对建筑热负荷进行预测,并使用4个评价指标来评估预测精度。结果表明,ETR模型与XGBR模型的预测性能最佳。ETR模型的均方根误差(RMSE)低至97.189 4 kW,R2值达0.766 0。XGBR模型的平均绝对误差(MAE)与平均绝对百分比误差(MAPE)分别低至69.967 1 kW和4.086 0%。这2种模型均展现出较高的预测精度,为后续建筑热负荷预测研究提供了参考。

关键词: 建筑能耗, 负荷预测, 机器学习, 树模型, 神经网络, 相关系数, 建筑能源系统, 供热

Abstract:

Accurate prediction of building heating load is crucial for optimizing the operation of building energy systems, reducing energy consumption, and achieving building energy-saving goals. Using machine learning algorithms for prediction can effectively overcome the limitations of traditional prediction methods, significantly reducing the computational cost of conventional simulation analyses and enhancing system energy efficiency. Five regression machine learning models — random forest regression (RFR), extremely randomized trees regression (ETR), gradient boosting regression (GBR), extreme gradient boosting regression (XGBR), and multilayer perceptron (MLP) — were employed to predict building heating load. Four indicators were used to evaluate their prediction accuracy. The results showed that the ETR and XGBR models demonstrated the optimal predictive performance among all models. The ETR model achieved a root mean square error (RMSE) as low as 97.189 4 kW and an R2 value of 0.766 0. The XGBR model achieved a mean absolute error (MAE) and a mean absolute percentage error (MAPE) as low as 69.967 1 kW and 4.086 0%, respectively. These two models achieve high predictive accuracy, providing valuable references for subsequent research on building heating load prediction.

Key words: building energy consumption, load prediction, machine learning, tree model, neural network, correlation coefficient, building energy systems, heat supply

中图分类号: