综合智慧能源 ›› 2025, Vol. 47 ›› Issue (6): 47-56.doi: 10.3969/j.issn.2097-0706.2025.06.006

• 新能源与智能算法 • 上一篇    下一篇

基于改进HHO-LSTM-Self-Attention的质子交换膜燃料电池剩余使用寿命预测

蒋剑(), 杜董生*(), 苏林   

  1. 淮阴工学院 自动化学院,江苏 淮安 223003
  • 收稿日期:2025-01-24 修回日期:2025-02-19 出版日期:2025-06-25
  • 通讯作者: 杜董生*(1979),男,教授,博士,从事故障诊断与容错控制等方面的研究,dshdu@163.com
  • 作者简介:蒋剑(1999),男,硕士生,从事质子交换膜燃料电池剩余使用寿命预测方面的研究,17768934883@163.com
  • 基金资助:
    国家自然科学基金项目(62173159)

Remaining useful life prediction of proton exchange membrane fuel cells based on improved HHO-LSTM-Self-Attention

JIANG Jian(), DU Dongsheng*(), SU Lin   

  1. School of Automation,Huaiyin Institute of Technology,Huai'an 223003,China
  • Received:2025-01-24 Revised:2025-02-19 Published:2025-06-25
  • Supported by:
    National Natural Science Foundation of China(62173159)

摘要:

质子交换膜燃料电池(PEMFC)在诸多领域有着广泛应用,但其性能衰退会降低功率输出和能源转换效率、缩短使用寿命,准确预测剩余使用寿命对维护系统、降低成本及保障供电稳定极为关键。基于PEMFC功率随时间的变化趋势,提出了一种结合改进的哈里斯鹰优化(HHO)算法、长短期记忆(LSTM)网络和自注意力(Self-Attention)机制的PEMFC剩余使用寿命预测模型。基于电流和电压数据关系得出时间-功率变化曲线,采用小波自适应去噪和指数平滑相结合的方法对时间-功率数据进行分解去噪和重构;针对LSTM训练参数过多、计算量大等不足,提出了一种Logistics混沌映射与HHO算法相结合来优化LSTM的方法,以提高模型的训练速度和预测精度;基于Self-Attention具有聚焦关键信息和提高模型训练准确率的优点,构建了HHO-LSTM-Self-Attention预测模型。试验结果表明,与HHO-LSTM,LSTM,麻雀搜索算法(SSA)-LSTM,粒子群优化(PSO)-LSTM等预测模型相比,该模型具有更高的预测精度。

关键词: 质子交换膜燃料电池, 剩余使用寿命预测, 哈里斯鹰优化算法, 长短期记忆神经网络, 自注意力机制

Abstract:

Proton exchange membrane fuel cells(PEMFCs) are widely used in various fields. However,their performance degradation can reduce power output and energy conversion efficiency,and shorten service life. Accurate remaining useful life(RUL) prediction of PEMFCs is crucial for system maintenance,cost reduction,and stable power supply. Based on the temporal variation trend of PEMFC power output,a RUL prediction model that integrated improved Harris Hawks Optimization(HHO) algorithm,long short-term memory(LSTM) network,and self-attention mechanism was proposed. The time-power variation curve was derived from the relationship between current and voltage data. A combination of wavelet adaptive denoising and exponential smoothing was used for decomposition,denoising,and reconstruction of time-power data. To address issues such as excessive training parameters and high computational cost of LSTM,a method combining logistic chaotic mapping with the HHO algorithm was proposed to optimize LSTM,improving training speed and prediction accuracy. Leveraging the self-attention mechanism's advantages in focusing on key information and enhancing training accuracy,the HHO-LSTM-Self-Attention prediction model was established. Experimental results showed that compared with other prediction models such as HHO-LSTM,LSTM,Sparrow Search Algorithm(SSA)-LSTM,and Particle Swarm Optimization (PSO)-LSTM,the proposed model achieved higher prediction accuracy.

Key words: proton exchange membrane fuel cell, remaining useful life prediction, Harris Hawks Optimization algorithm, long short-term memory neural network, self-attention mechanism

中图分类号: