综合智慧能源 ›› 2025, Vol. 47 ›› Issue (6): 57-73.doi: 10.3969/j.issn.2097-0706.2025.06.007
李晓宁a(), 孙娜a(
), 黄阿敏b(
), 董海鹰a,*(
)
收稿日期:
2025-02-05
修回日期:
2025-03-20
出版日期:
2025-06-25
通讯作者:
董海鹰*(1966),男,二级教授,博士生导师,博士,从事复杂系统建模与智能控制理论、电力系统运行与优化控制、新能源发电控制与优化等方面的研究,hydong@mail.lzjtu.cn。作者简介:
李晓宁(1998),男,硕士生,从事氢燃料电池控制策略方面的研究,lxn210838@163.com;基金资助:
LI Xiaoninga(), SUN Naa(
), HUANG Aminb(
), DONG Haiyinga,*(
)
Received:
2025-02-05
Revised:
2025-03-20
Published:
2025-06-25
Supported by:
摘要:
质子交换膜燃料电池(PEMFC)的空气流量和压力之间耦合性强,导致电池系统输出稳定性差、响应速度慢等,针对此问题,基于空气供给系统前馈补偿解耦结构,提出采用蛇优化(SO)算法和模糊控制改进的自抗扰控制策略。基于前馈补偿解耦结构建立空气供给系统状态空间方程,推导流量、压力耦合矩阵,设计解耦矩阵消除二者的耦合性。设计改进自抗扰控制,将自抗扰控制中反馈控制律增益分为2部分,采用模糊控制对第1部分进行粗调;采用改进SO算法对自抗扰控制中状态观测器增益与反馈控制律增益第2部分参数精确整定。其中,改进SO算法融合了基于序列的正弦分段混沌映射(SPM)策略初始化种群,增强种群多样性;动态惯性权重和三角形游走策略解决了勘探阶段前期寻优速度慢等缺陷;透镜成像和贪婪组合策略扩大搜索范围,防止陷入局部最优解。搭建3 kW燃料电池系统,验证所提出控制策略的正确性和有效性。试验验证了该策略在解耦方面和目标值跟踪方面具有良好的控制效果,系统超调量、调节时间以及系统振荡显著减小,该策略提高了燃料电池系统的响应速度和动态性能。
中图分类号:
李晓宁, 孙娜, 黄阿敏, 董海鹰. 基于蛇优化算法的PEMFC空气供给系统模糊自抗扰控制[J]. 综合智慧能源, 2025, 47(6): 57-73.
LI Xiaoning, SUN Na, HUANG Amin, DONG Haiying. Fuzzy active disturbance rejection control of PEMFC air intake unit based on snake optimization algorithm[J]. Integrated Intelligent Energy, 2025, 47(6): 57-73.
表1
模糊逻辑规则
E | ΔE | ||||||
---|---|---|---|---|---|---|---|
NL | NM | NS | ZE | PS | PM | PL | |
NL | PL/NL | PM/NL | PM/NM | PS/NM | PS/NS | ZE/ZE | ZE/ZE |
NM | PM/NL | PM/NL | PS/NM | PS/NS | ZE/NS | ZE/ZE | NS/ZE |
NS | PM/NL | PS/NM | PS/NS | ZE/NS | ZE/ZE | NS/PS | NM/PS |
ZE | PM/NM | PS/NM | PS/NS | ZE/ZE | NS/PS | NS/PM | NM/PM |
PS | PL/NM | PS/NS | ZE/ZE | NS/PS | NS/PS | NS/PM | NM/PL |
PM | PS/ZE | ZE/ZE | NS/PS | NS/PS | NS/PM | NM/PL | NM/PL |
PL | ZE/ZE | NS/ZE | NS/PS | NS/PM | NM/PM | NM/PL | NL/PL |
表5
基准测试函数优化结果比较
项目 | 基准测试函数 | ||||
---|---|---|---|---|---|
F1 | F2 | F3 | F4 | ||
PSO | 平均值 | 2.157×10-5 | 1.046×10-1 | 5.439×10-3 | 7.574×10-6 |
最优值 | 1.054×10-6 | 1.829×10-2 | 3.382×10-4 | 5.129×10-8 | |
标准差 | 3.754×10-5 | 2.785×10-2 | 7.143×10-3 | 6.729×10-6 | |
SO | 平均值 | 3.057×10-2 | 4.527×10-3 | 5.147×10-13 | 6.754×10-4 |
最优值 | 1.276×10-3 | 2.711×10-4 | 4.441×10-15 | 9.389×10-6 | |
标准差 | 1.056×10-2 | 3.480×10-3 | 3.724×10-13 | 4.623×10-4 | |
ISO | 平均值 | 9.473×10-8 | 5.267×10-4 | 5.178×10-14 | 7.442×10-9 |
最优值 | 3.181×10-9 | 3.377×10-5 | 8.882×10-16 | 9.521×10-11 | |
标准差 | 5.418×10-8 | 3.713×10-4 | 4.135×10-14 | 4.176×10-9 |
表7
不同控制方法对变量的调节效果
控制变量 | 控制方法 | OS | AT/s | ||
---|---|---|---|---|---|
流量/% | 压力/V | 流量 | 压力 | ||
空气流量、压力解耦 | 未解耦 | 26.91 | 0 | 5.280 0 | 14.07 |
PI | 3.74 | 0 | 6.030 0 | 13.36 | |
Fuzzy-PI | 2.31 | 0 | 1.750 0 | 9.67 | |
恒定OER | PID | 24.79 | 2.436 2 | ||
fuzzyADRC | 20.21 | 4.748 5 | |||
ISO-fuzzyADRC | 10.06 | 0.514 6 | |||
变OER | PID | 6.17 | 16.471 4 | ||
fuzzyADRC | 2.05 | 11.427 5 | |||
ISO-fuzzyADRC | 0 | 7.103 6 | |||
Δpca | PID | 13.98 | 7.375 8 | ||
fuzzyADRC | 0 | 4.937 6 | |||
ISO-fuzzyADRC | 5.07 | 1.428 5 |
[1] | 郝俊红, 冯晓龙, 杨云溪, 等. 分布式换能系统的概念、架构与规划分析[J]. 中国电机工程学报, 2024, 44(10): 3885-3897. |
HAO Junhong, FENG Xiaolong, YANG Yunxi, et al. Concept, architecture and planning analysis of distributed energy exchange system[J]. Chinese Journal of Electrical Engineering, 2024, 44(10): 3885-3897. | |
[2] | 郑玉荣, 靳军宝, 白光祖, 等. 氢燃料电池关键技术发展态势研究[J]. 现代化工, 2024, 44(11): 12-17. |
ZHENG Yurong, JIN Junbao, BAI Guangzu, et al. Research on development trend of key technologies for hydrogen fuel cells[J]. Modern Chemical Industry, 2024, 44(11): 12-17. | |
[3] | 刘涛, 郭家新, 韩莹, 等. 氢燃料电池公交研究文献综述及展望[J]. 交通运输系统工程与信息, 2024, 24(5):1-13,23. |
LIU Tao, GUO Jiaxin, HAN Ying, et al. Hydrogen fuel cell bus: A literature review and prospects[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(5): 1-13, 23. | |
[4] | 王丽, 李蓓, 张帆, 等. 基于增益调度模型预测控制的SOFC-GT混合动力系统温度控制[J]. 综合智慧能源, 2022, 44(10): 42-49. |
WANG Li, LI Bei, ZHANG Fan, et al. Temperature control for a SOFC-GT hybrid power system based on gain scheduling model predictive control[J]. Integrated Intelligent Energy, 2022, 44(10): 42-49. | |
[5] | 胡翀, 赵袁, RAZA Ali. 基于单层电堆形式的质子交换膜燃料电池仿真模拟研究及优化[J]. 综合智慧能源, 2022, 44(8): 91-96. |
HU Chong, ZHAO Yuan, RAZA Ali, et al. Simulation and optimization for the PEMFC based on single-cell stack structure[J]. Integrated Intelligent Energy, 2022, 44(8): 91-96. | |
[6] | 焦志筱, 姜琦, 熊树生, 等. 基于自抗扰的PEMFC空气供给系统流量和压力控制[J]. 现代机械, 2024(6): 5-11. |
JIAO Zhixiao, JIANG Qi, XIONG Shusheng, et al. Air flow and pressure control of PEMFC air supply system based on ADRC[J]. Modern Machinery, 2024(6): 5-11. | |
[7] | 薛国庆, 袁裕鹏, 李娜, 等. PEMFC系统空气流量与压力前馈PID协同控制[J]. 武汉理工大学学报, 2024, 46(9): 127-135. |
XUE Guoqing, YUAN Yupeng, LI Na, et al. Co-control of air flow and pressure feed-forward PID for PEMFC system[J]. Journal of Wuhan University of Technology, 2024, 46(9): 127-135. | |
[8] | 陈家城. 燃料电池空气供给系统建模与控制[J]. 机电技术, 2023, 46(3): 70-73, 91. |
CHEN Jiacheng. Modeling and control of fuel cell air supply system[J]. Mechanical & Electrical Technology, 2023, 46(3): 70-73, 91. | |
[9] | WANG Y L, WANG Y F. Pressure and oxygen excess ratio control of PEMFC air management system based on neural network and prescribed performance[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 105850. |
[10] | ZHAO D D, XIA L, DANG H B, et al. Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy[J]. Energy Conversion and Management, 2022, 253: 115159. |
[11] | ZENG T, XIAO L, CHEN J R, et al. Feedforward-based decoupling control of air supply for vehicular fuel cell system: Methodology and experimental validation[J]. Applied Energy, 2023, 335: 120756. |
[12] | 孙田. 重卡用大功率燃料电池发动机空气供给控制策略研究[D]. 北京: 北京交通大学, 2020. |
SUN Tian. Research on air supply control strategy of high-power fuel cell engine for heavy trucks[D]. Beijing: Beijing Jiaotong University, 2020. | |
[13] | XU J H, ZHANG B X, YAN H Z, et al. A decoupling control of air supply for the PEM fuel cell with slide mode-active disturbance rejection controller[J]. Sustainable Energy Technologies and Assessments, 2024, 72: 104051. |
[14] | ZHAO D D, LI F, MA R, et al. An unknown input nonlinear observer based fractional order PID control of fuel cell air supply system[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5523-5532. |
[15] | MA L, ZHAO H, QU Y, et al. Reduced‐order active disturbance rejection control method for PEMFC air intake system based on the estimation of oxygen excess ratio[J]. IET Renewable Power Generation, 2023, 17(4): 951-963. |
[16] | LI J W, YU T. Intelligent controller based on distributed deep reinforcement learning for PEMFC air supply system[J]. IEEE Access, 2021, 9: 7496-7507. |
[17] | 齐鲲鹏, 陈超帆, HassanAli. 质子交换膜燃料电池阴阳极恒压差控制策略研究[J]. 客车技术与研究, 2023, 45(4): 1-6. |
QI Kunpeng, CHEN Chaofan, HASSAN A. Study on control strategy of cathode and anode stable pressure difference in proton exchange membrane fuel cell[J]. Bus & Coach Technology and Research, 2023, 45(4): 1-6. | |
[18] | ZHU J, ZHANG P, LI X, et al. Robust oxygen excess ratio control of PEMFC systems using adaptive dynamic programming[J]. Energy Reports, 2022, 8: 2036-2044. |
[19] | GHASEMI J, RAKHTALA S M, RASEKHI J, et al. PEM fuel cell system to extend the stack life based on a PID-PSO controller design[J]. Complex Engineering Systems, 2022, 2(4):20517. |
[20] | YILDIRIM B, GHEISARNEJAD M, ÖZDEMIR M T, et al. Multi-agent fuzzy Q-learning-based PEM fuel cell air-feed system control[J]. International Journal of Hydrogen Energy, 2024, 75: 354-362. |
[21] | LIU J X, GAO Y B, SU X J, et al. Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique[J]. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1129-1138. |
[22] | ZHAO D D, XU L C, HUANGFU Y G, et al. Semi-physical modeling and control of a centrifugal compressor for the air feeding of a PEM fuel cell[J]. Energy Conversion and Management, 2017, 154: 380-386. |
[23] | CHEN H C, LIU Y H, DENG C H, et al. Research on improving dynamic response ability of 30 kW real fuel cell system based on operating parameter optimization[J]. International Journal of Hydrogen Energy, 2023, 48(3): 1075-1089. |
[24] | JIN L J, XU J C, WANG L Z. A sensorless control method for energy recovery of EGTAC to improve PEMFC efficiency[J]. IEEE Access, 2024, 12: 34160-34173. |
[25] | 肖仰淦, 吴肖龙, 李曦. 基于ADRC的PEMFC系统阴极相对湿度和氧气过量比控制[J]. 太阳能学报, 2023, 44(12): 499-509. |
XIAO Yanggan, WU Xiaolong, LI Xi. Control of cathode relative humidity and oxygen excess ratio in PEMFC system based on ADRC[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 499-509. | |
[26] | 袁昊, 张铁臣, 杨祖勇, 等. 基于自抗扰原理的燃料电池阳极压力控制研究[J]. 内燃机与配件, 2023(6): 14-18. |
YUAN Hao, ZHANG Tiechen, YANG Zuyong, et al. Research on anode pressure control of PEMFC based on active disturbance rejection principle[J]. Internal Combustion Engine & Parts, 2023(6): 14-18. | |
[27] | 权浩迪, 刘勇国, 傅翀, 等. 多策略改进的蛇优化算法[J]. 计算机技术与发展, 2024, 34(5): 117-125. |
QUAN Haodi, LIU Yongguo, FU Chong, et al. Improved snake optimizer of multi-strategy[J]. Computer Technology and Development, 2024, 34(5): 117-125. | |
[28] | 谢海波, 陈晗奔, 刘建彬, 等. 基于ITAE准则的大流量平衡阀关键参数优化研究[J]. 液压与气动, 2019, 43(3): 43-48. |
XIE Haibo, CHEN Hanben, LIU Jianbin, et al. Key parameters optimization based on ITAE criterion for large flow load control valve[J]. Chinese Hydraulics & Pneumatics, 2019, 43(3): 43-48. | |
[29] | 班多晗, 吕鑫, 王鑫元. 基于一维混沌映射的高效图像加密算法[J]. 计算机科学, 2020, 47(4): 278-284. |
BAN Duohan, LV Xin, WANG Xinyuan. Efficient image encryption algorithm based on 1D chaotic map[J]. Computer Science, 2020, 47(4): 278-284. | |
[30] | JIA H M, ZHANG J R, RAO H H, et al. Improved sandcat swarm optimization algorithm for solving global optimum problems[J]. Artificial Intelligence Review, 2024, 58:10986. |
[1] | 蒋剑, 杜董生, 苏林. 基于改进HHO-LSTM-Self-Attention的质子交换膜燃料电池剩余使用寿命预测[J]. 综合智慧能源, 2025, 47(6): 47-56. |
[2] | 叶幸, 邱辰, 艾琳, 辛颂旭, 郭雁珩. “双碳”目标下可再生能源绿证与碳交易衔接机制的思考[J]. 综合智慧能源, 2025, 47(5): 12-20. |
[3] | 陈浩, 马刚, 钱达, 马健, 彭乐瑶. 绿证-碳交易机制下考虑阶梯需求响应的区域综合能源系统优化调度[J]. 综合智慧能源, 2025, 47(5): 21-30. |
[4] | 张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47(3): 32-46. |
[5] | 张敏, 王雁河, 孙周, 刘斌, 姜之未, 曹灿, 高峰. 交能融合应用场景与技术体系研究[J]. 综合智慧能源, 2025, 47(2): 13-28. |
[6] | 苏锐, 王希龙, 江阎, 宋晨辉. 基于改进成本分配法的虚拟电厂调度规划[J]. 综合智慧能源, 2025, 47(1): 10-17. |
[7] | 徐强. 基于NSGA-Ⅲ算法的分布式光伏储能系统优化配置方法[J]. 综合智慧能源, 2025, 47(1): 26-33. |
[8] | 聂雪颖, 程懋松, 左献迪, 戴志敏. 考虑风光消纳的风光核储混合系统容量优化[J]. 综合智慧能源, 2025, 47(1): 51-61. |
[9] | 王晓燕, 吴书泉. 基于改进粒子群优化算法的源网荷储系统容量配置研究[J]. 综合智慧能源, 2024, 46(9): 28-36. |
[10] | 樊颜搏, 熊亚选, 李想, 田曦, 杨洋. 基于遗传算法的建筑用能多目标优化应用进展[J]. 综合智慧能源, 2024, 46(9): 69-85. |
[11] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[12] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
[13] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
[14] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[15] | 缪月森, 夏红军, 黄宁洁, 李云, 周世杰. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||