[1] |
康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”:科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833.
|
|
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833.
|
[2] |
孔慧超, 黄学劲, 王文钟, 等. 园区受端新型电力系统电力电量再平衡方法[J]. 综合智慧能源, 2024, 46(2):68-74.
|
|
KONG Huichao, HUANG Xuejin, WANG Wenzhong, et al. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks[J]. Integrated Intelligent Energy, 2024, 46(2): 68-74.
|
[3] |
喻小宝, 赵雯婧, 孙艺新. 计及双重不确定性的综合能源系统运行优化模型研究[J]. 综合智慧能源, 2023, 45(10): 10-17.
|
|
YU Xiaobao, ZHAO Wenjing, SUN Yixin. Integrated energy system operation optimization model considering double uncertainties[J]. Integrated Intelligent Energy, 2023, 45(10): 10-17.
|
[4] |
RE100 Members. Over 400 RE100 companies have made a commitment to go '100% renewable'[EB/OL]. (2020-12-08)[2024-06-01]. https://www.there100.org/re100-members.
|
[5] |
魏夕凯, 谭效时, 林明, 等. 2005—2035年全国电网碳排放因子的计算与预测[J]. 综合智慧能源, 2024, 46(3): 72-78.
|
|
WEI Xikai, TAN Xiaoshi, LIN Ming, et al. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035[J]. Integrated Intelligent Energy, 2024, 46(3): 72-78.
|
[6] |
SUN W, REN C M. Short-term prediction of carbon emissions based on the EEMD-PSOBP model[J]. Environmental Science and Pollution Research International, 2021, 28(40): 56580-56594.
|
[7] |
张宁, 李姚旺, 黄俊辉, 等. 电力系统全环节碳计量方法与碳表系统[J]. 电力系统自动化, 2023, 47(9): 2-12.
|
|
ZHANG Ning, LI Yaowang, HUANG Junhui, et al. Carbon measurement method and carbon meter system for whole chain of power system[J]. Automation of Electric Power Systems, 2023, 47(9): 2-12.
|
[8] |
杨雨瑶, 潘峰, 钟立华, 等. 基于神经网络的电力系统节点碳排放因子预测方法[J]. 广东电力, 2023, 36(10): 2-9.
|
|
YANG Yuyao, PAN Feng, ZHONG Lihua, et al. Study on prediction method of node carbon emission factors in power system based on neural network[J]. Guangdong Electric Power, 2023, 36(10): 2-9.
|
[9] |
雷景生, 李冉, 杨胜英, 等. 融合社交信息的多图神经网络会话推荐方法[J]. 计算机工程与应用, 2023, 59(15): 264-273.
|
|
LEI Jingsheng, LI Ran, YANG Shengying, et al. Session-based recommendation based on multi-graph neural network incorporating social information[J]. Computer Engineering and Applications, 2023, 59(15): 264-273.
|
[10] |
SHUI Z R, KARYPIS G. Heterogeneous molecular graph neural networks for predicting molecule properties[C]//Proceedings of 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020: 492-500.
|
[11] |
姜山, 丁治明, 徐馨润, 等. 面向路网交通流态势预测的图神经网络模型[J]. 计算机科学与探索, 2021, 15(6): 1084-1091.
|
|
JIANG Shan, DING Zhiming, XU Xinrun, et al. Graph neural network for traffic flow situation prediction[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1084-1091.
|
[12] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22)[2024-06-01]. https://arxiv.org/abs/1609.02907v4.
|
[13] |
朱子意, 孙晓燕, 柳先彪, 等. 基于相似用电单元及图卷积神经网络的电力负荷预测[J]. 电力科学与工程, 2023, 39(7): 9-23.
|
|
ZHU Ziyi, SUN Xiaoyan, LIU Xianbiao, et al. Power load forecasting based on similar power units and graph convolution neural network[J]. Electric Power Science and Engineering, 2023, 39(7): 9-23.
|
[14] |
VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J/OL]. ICLR,(2018-02-04)[2024-06-01]. https://arxiv.org/abs/1710.10903.
|
[15] |
荣沛, 苏凡军. 基于知识图注意网络的个性化推荐算法[J]. 计算机应用研究, 2021, 38(2): 398-402.
|
|
RONG Pei, SU Fanjun. Personalized recommendation algorithm based on knowledge graph attention network[J]. Application Research of Computers, 2021, 38(2): 398-402.
|
[16] |
YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[J]. ArXiv e-Prints, 2017: arXiv: 1709.04875.
|
[17] |
GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929.
|
[18] |
林琳, 邓国新, 樊浩. 基于天气模式识别与时空图神经网络的新能源发电功率预测[J]. 电气自动化, 2023, 45(3): 30-33.
|
|
LIN Lin, DENG Guoxin, FAN Hao. New energy generation power prediction based on weather pattern recognition and spatiotemporal graph neural network[J]. Electrical Automation, 2023, 45(3): 30-33.
|
[19] |
YAN H Y, MA X L, PU Z Y. Learning dynamic and hierarchical traffic spatiotemporal features with transformer[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 22386-22399.
|
[20] |
YING C, CAI T, LUO S, et al. Do transformers really perform badly for graph representation?[C]// Advances in Neural Information Processing Systems, Cambridge, MA: MITPress, 2021:28877-28888.
|
[21] |
周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流的计算方法初探[J]. 电力系统自动化, 2012, 36(11): 44-49.
|
|
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary investigation on a method for carbon emission flow calculation of power system[J]. Automation of Electric Power Systems, 2012, 36(11): 44-49.
|
[22] |
RAMCHOUN H, AMINE M, IDRISSI J, et al. Multilayer perceptron: architecture optimization and training[J]. International Journal of Interactive Multimedia and Artificial Intelligence, 2016, 4(1): 26.
|
[23] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017,30: 5998-6008.
|
[24] |
HE K M, ZHANG X G, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016: 770-778.
|