Huadian Technology ›› 2021, Vol. 43 ›› Issue (3): 57-64.doi: 10.3969/j.issn.1674-1951.2021.03.009
• Energy Conservation and Environmental Protection • Previous Articles Next Articles
PENG Weike, NIE Chunming, CHEN Heng, XU Gang*()
Received:
2021-01-08
Revised:
2021-02-28
Published:
2021-03-25
Contact:
XU Gang
E-mail:xgncepu@163.com
CLC Number:
PENG Weike, NIE Chunming, CHEN Heng, XU Gang. Study on load forecasting for air cooling thermal power units based on intelligent algorithm[J]. Huadian Technology, 2021, 43(3): 57-64.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.03.009
Tab.8
Random Forest prediction results made by partition modeling and overall modeling
项目 | 功率范围/MW | δMAE/MW | δMAPE/% | δRMSE/MW | R2 | 数据量 |
---|---|---|---|---|---|---|
高负荷区子模型 | >450 | 2.160 8 | 0.448 0 | 3.349 8 | 0.973 5 | 791 |
中高负荷区子模型 | 380 | 2.218 0 | 0.545 5 | 3.265 0 | 0.941 1 | 3 734 |
中负荷区子模型 | 320 | 2.001 2 | 0.573 4 | 2.978 2 | 0.939 9 | 8 200 |
低负荷区子模型 | >320 | 1.126 5 | 0.370 8 | 1.695 5 | 0.925 1 | 2 835 |
分负荷区建模平均 | 250 | 1.902 0 | 0.523 4 | 2.832 2 | 0.939 2 | 15 560 |
整体建模 | 250 | 2.259 0 | 0.622 7 | 3.371 8 | 0.990 1 | 15 560 |
[1] | 房丽萍 . 直接空冷机组冷端系统能效评价与故障诊断方法研究[D]. 北京:华北电力大学, 2015. |
[2] | 丁伟, 任少君, 司风琪 , 等. 一种基于HMF的火电机组短期负荷预测方法[J]. 热能动力工程, 2020,35(1):191-197. |
DING Wei, REN Shaojun, SI Fengqi , et al. A short term load forecasting method for thermal power units based on HMF[J]. Thermal Power Engineering, 2020,35(1):191-197. | |
[3] | 骆小满, 皇甫成, 阮江军 , 等. 基于神经网络的热电联产机组热负荷和电负荷预测[J]. 热力发电, 2019,48(9):46-50. |
LUO Xiaoman, HUANG Fucheng, RUAN Jiangjun , et al. Prediction of heat load and electric load of cogeneration unit based on neural network[J]. Thermal Power Generation, 2019,48(9):46-50. | |
[4] | 张然然, 刘鑫屏 . 火电机组超短期负荷预测[J] . 热力发电, 2018,47(7):52-57. |
ZHANG Ranran, LIU Xingping . Ultra-short-term load forecasting of thermal power units[J]. Thermal Power Generation, 2018,47(7):52-57. | |
[5] | 王艳 . 300 MW机组直接空冷系统在线性能监测与运行优化[D]. 北京:华北电力大学, 2013. |
[6] | AKPAN P U, FULS W F . Application and limits of a constant effectiveness model for predicting the pressure of steam condensers at off-design loads and cooling fluid temperatures[J]. Applied Thermal Engineering, 2019,158:113779. |
[7] | 韩瑜 . 基于数据挖掘的单元机组运行参数的优化研究[D]. 北京:华北电力大学, 2016. |
[8] | 刘丽华 . 环境因素影响下火电直接空冷系统性能研究[D]. 北京:华北电力大学, 2014. |
[9] | 苏创世 . 基于优化ELM算法的电站凝汽器故障诊断[D]. 北京:华北电力大学, 2019. |
[10] | 张维 . 掺烧煤泥循环流化床机组运行督导与智能预警[D]. 北京:华北电力大学, 2019. |
[11] | 高建强, 马亚, 钟锡镇 , 等. 基于遗传神经网络的直接空冷凝汽器故障诊断研究[J]. 华北电力大学学报(自然科学版), 2013,40(3):69-73. |
GAO Jianqiang, MA Ya, ZHONG Xizheng , et al. Fault diagnosis of direct air-cooled condenser based on Genetic neural network[J]. Journal of North China Electric Power University(Natural Science Edition), 2013,40(3):69-73. | |
[12] | 闻新, 张兴旺, 朱亚萍 , 等. 智能故障诊断技术:MATLAB应用[M]. 北京: 北京航空航天大学出版社, 2015. |
[13] | 髙蕴华 . 火力发电厂直接空冷机组运行优化技术研究[D]. 保定:华北电力大学, 2018. |
[14] | 杨磊 . 基于BP神经网络的重力异常分离[J]. 工程地球物理学报, 2021,18(1) : 90-97. |
YANG Lei . Gravity anomaly separation based on BP neural network[J]. Chinese Journal of Engineering Geophysics, 2021,18(1):90-97. | |
[15] | 吴子轩, 张宁, 高凯烨 , 等. 基于风险偏好调整的随机森林算法的航班航程油量预测[J]. 航空学报.DOI: 10.7527/S1000-6893.2021.24933. |
WU Zixue, ZHANG Ning, GAO Kaiye , et al. Volume prediction of trip fuel for flight based on random forest with adjustment of risk preference[J]. Acta Aeronautica et Astronautica Sinica.DOI: 10.7527/S1000-6893.2021.24933. | |
[16] | LU S L, LI Q P, WANG R , et al. Performance predictions of ground source heat pump system based on random forest and back propagation neural network models[J]. Energy Conversion and Management, 2019,197:111864. |
[17] | 卢维学, 吴和成, 万里洋 . 基于融合随机森林算法的PLS对降水量的预测[J]. 统计与决策, 2020,36(18):27-31. |
LU Weixue, WU Hecheng, WAN Liyang . Prediction of precipitation based on PLS fusion random forest algorithm[J]. Statistics and Decision, 2020,36(18):27-31. | |
[18] | 文雯, 刘文哲, 肖祥武 , 等. 基于大数据和并行随机森林算法火电机组供电煤耗计算模型[J]. 热力发电, 2018,47(9):9-14. |
WEN Wen, LIU Wenzhe, XIAO Xiangwu , et al. Calculation model of coal consumption for power supply of thermal power unit based on big data and parallel random forest algorithm[J]. Thermal Power Generation, 2018,47(9):9-14. | |
[19] | LI X, WANG N, WANG L , et al. Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants[J]. Apply Energy, 2018,209:153-166. |
[20] | 张尚志, 谭鹏, 何彪 , 等. 基于滑动判别算法的低NOx燃烧优化分析[J]. 热力发电, 2016,45(5):33-40. |
ZHANG Shangzhi, TAN Peng, HE Biao , et al. Combustion optimization for low NOx-emission based on slippage distinguishing algorithm[J]. Thermal Power Generation, 2016,45(5):33-40. | |
[21] | 姜寅, 任荭葳, 陈凯 , 等. 基于BP神经网络的风电系统控制器I/O硬件故障自诊断方法[J]. 华电技术, 2020,42(5):55-60. |
JIANG Yin, REN Hongwei, CHEN Kai , et al. Self-detecting method for faults in wind turbine controller I/O hardware based on BP neural network algorithm[J]. Huadian Technology, 2020,42(5):55-60. | |
[22] | XU J, GU Y J, CHEN D C , et al. Data mining based plant-level load dispatching strategy for the coal-fired power plant coal-saving: A case study[J]. Applied Thermal Engineering, 2017,119:553-559. |
[23] | LV Y, LV X G, FANG F , et al. Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants[J]. Energy, 2020,192:116589. |
[24] | YANG G T, WANG Y N, LI X L . Prediction of the NOx emissions from thermal power plant using long-short term memory neural network[J]. Energy, 2020,192:116597. |
[25] | WANG Z, WANG Y, ZENG R , et al. Random forest based hourly building energy prediction[J]. Energy Buildings, 2018,171:11-25. |
[26] | LI J, BAI Y, LI B . Operation of air cooled condensers for optimised back pressure at ambient wind[J]. Applied Thermal Energy, 2018,128:1340-1350. |
[1] | XU Ganglei. Discussion on sustainable development of large hydropower projects in southwestern China under new situation [J]. Huadian Technology, 2021, 43(5): 80-85. |
[2] | SUN Zheng-rui . Non-flexible metal seal modification of 670MW supercritical once-through boiler [J]. Huadian Technology, 2008, 30(2): 39-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||