Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (3): 70-76.doi: 10.3969/j.issn.2097-0706.2022.03.011
• Intelligent Power • Previous Articles Next Articles
LI Xujiong1(), SUN Linhua1, YANG Guoming2
Received:
2021-09-15
Revised:
2021-11-15
Published:
2022-03-25
CLC Number:
LI Xujiong, SUN Linhua, YANG Guoming. MPPT for PV systems appended with centripetal attribute based on improved PSO algorithm[J]. Integrated Intelligent Energy, 2022, 44(3): 70-76.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.03.011
Table 1
Performance comparison of different algorithm
PV 布置 | 阴影模式与 功率峰值/W | 跟踪方法 | 功率/ W | 收敛时 间/s | 跟踪效 率/% | 能量跟 踪因子 |
---|---|---|---|---|---|---|
7s6p | P1 | 推荐 方法 | 399.60 | 1.56 | 99.99 | 0.967 8 |
399.6(GMPP) | PSO | 399.60 | 2.14 | 99.98 | 0.914 6 | |
356.9(LMPP) | P&O | 319.80 | 2.04 | 80.03 | 0.796 1 | |
325.9(LMPP) | FF | 399.60 | 2.58 | 99.75 | 0.930 6 | |
319.8(LMPP) | DPSO | 399.60 | 2.25 | 98.56 | 0.932 8 | |
314.2(LMPP) | ABC | 397.90 | 2.70 | 99.58 | 0.919 1 | |
247.8(LMPP) | INC | 314.20 | 0.36 | 78.62 | 0.765 6 | |
3s6p | P2 | 推荐 方法 | 32.71 | 1.82 | 99.98 | 0.968 0 |
32.7(GMPP) | PSO | 32.71 | 3.05 | 99.98 | 0.908 6 | |
20.4(LMPP) | P&O | 32.71 | 2.02 | 99.98 | 0.942 6 | |
FF | 32.71 | 2.18 | 99.78 | 0.910 6 | ||
DPSO | 32.71 | 2.25 | 99.78 | 0.941 1 | ||
ABC | 32.71 | 2.10 | 99.56 | 0.913 9 | ||
INC | 32.71 | 0.38 | 99.78 | 0.957 2 |
Table 5
Experimental results of different algorithms
PV 布置 | 阴影模式与 功率峰值/W | 跟踪方法 | 功率/ W | 收敛时间/s | 跟踪效 率/% | 能量跟 踪因子 |
---|---|---|---|---|---|---|
4s4p | P3 | 推荐方法 | 56.25 | 1.90 | 99.98 | 0.958 3 |
56.25(GMPP) | PSO | 56.25 | 3.80 | 99.98 | 0.902 8 | |
47.50(LMPP) | P&O | 47.50 | 0.57 | 84.44 | 0.837 8 | |
P4 | 推荐方法 | 47.50 | 2.54 | 99.98 | 0.944 9 | |
47.50(GMPP) | PSO | 47.50 | 2.90 | 98.56 | 0.924 6 | |
27.50(LMPP) | P&O | 47.50 | 0.10 | 100.00 | 0.987 8 | |
3s6p | P5 | 推荐方法 | 33.75 | 1.80 | 99.99 | 0.958 5 |
33.75(GMPP) | PSO | 33.75 | 2.62 | 99.98 | 0.908 2 | |
23.75(LMPP) | P&O | 32.71 | 1.52 | 100.00 | 0.875 7 | |
P6 | 推荐方法 | 48.75 | 1.70 | 99.99 | 0.956 2 | |
48.75(GMPP) | PSO | 48.75 | 4.00 | 99.99 | 0.897 3 | |
36.85(LMPP) | P&O | 36.85 | 0.10 | 75.58 | 0.755 8 |
[1] | 张栋华. 微电网优化配置与运行研究[D]. 上海:东华大学, 2013. |
[2] | 王云平, 李颖, 阮新波. 基于局部阴影下光伏阵列电流特性的最大功率点跟踪算法[J]. 电工技术学报, 2016, 31(14):201-210,218. |
WANG Yunping, LI Ying, RUAN Xinbo. Maximum power point tracking algorithm for photovoltaic array under partial shading based on current property[J]. Transactions of China Electrotechnical Society, 2016, 31(14):201-210,218. | |
[3] | 朱湘临, 廖志凌, 刘国海. 太阳能电池MPPT方法的初值问题及其试验研究[J]. 电力电子技术, 2010, 44(2):7-9. |
ZHU Xianglin, LIAO Zhiling, LIU Guohai. Research on the initial values of MPPT algorithm for solar cell[J]. Power Electronics, 2010, 44(2):7-9. | |
[4] | 王镇道, 李炳璋. 一种光伏系统的多峰值最大功率点跟踪策略[J]. 电力电子技术, 2014, 48(9):4-6,37. |
WANG Zhendao, LI Bingzhang. A novel global maximum power point tracking strategy for photovoltaic system[J]. Power Electronics, 2014, 48(9):4-6,37. | |
[5] |
TEY K S, MEKHILEF S, SEYEDMAHMOUDIAN M, et al. Improved differential evolutionbased MPPT algorithm using SEPIC for PV systems under partial shaded conditions and load variation[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10):4322-4334.
doi: 10.1109/TII.9424 |
[6] | DARABAN S, PETREUS D, MOREL C. A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading[J]. Energy, 2014(74):374-388. |
[7] |
LIU Y H, HUANG S C, HUANG J W, et al. A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions[J]. IEEE Transactions on Energy Conversion, 2012, 27(4):1027-1035.
doi: 10.1109/TEC.2012.2219533 |
[8] | 李刚, 李超臣, 王雅文, 等. 局部阴影下光伏电池最大功率点跟踪方法[J/OL]. 电测与仪表, 2020.(2020-12-01)[2021-11-15]. https://kns.cnki.net/kcms/detail/23.1202.TH.20201130.1706.014.html. |
LI Gang, LI Chaochen, WANG Yawen, et al. Maximum power point tracking method for photovoltaic cells under partial shading conditions[J/OL]. Electrical Measurement & Instrumentation, 2020.(2020-12-01)[2021-11-15]. https://kns.cnki.net/kcms/detail/23.1202.TH.20201130.1706.014.html. | |
[9] | HOSSAIN M A, POTA H R, SQUARTINI S, et al. Modified PSO algorithm for realtime energy management in grid-connected microgrids[J]. Renewable Energy, 2019(136):746-757. |
[10] | EFEDI M Z, MURDIANTO F D, SETIAWAN R E. Modeling and simulation of MPPT sepic converter using modified PSO to overcome partial shading impact on DC microgrid system[J]. International Electronics Symposium on Engineering Technology and Applications (IES-ETA), 2017: 27-32. |
[11] | SUN Y, LOU Z, XI Z P, et al. Composite MPPT control algorithm with partial shading on PV arrays[J]. IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), 2018, 898-902. |
[12] | 李云凤, 雷勇, 杜佳耘, 等. 多态蚁群-细菌觅食算法实现部分遮蔽下光伏系统最大功率跟踪[J/OL]. 现代电力,2021.(2021-11-08)[2021-11-15]. https://doi.org/10.19725/j.cnki.1007-2322.2021.0082. |
LI Yunfeng, LEI Yong, DU Jiayun, et al. Maximum power tracking of photovoltaic system under partial shading based on PACO-BFOA[J/OL]. Modern Electric Power,2021.(2021-11-08)[2021-11-15]. https://doi.org/10.19725/j.cnki.1007-2322.2021.0082. | |
[13] |
THOMPSON W A, VERTINSKY I. Bird flocking revisited: The case with polymorphic prey[J]. Journal of Animal Ecology, 1975, 44(3):755-765.
doi: 10.2307/3717 |
[14] | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of ICNN'95-International Conference on Neural Networks. 1995: 1942-1948. |
[15] | 李昌华, 毕成功, 李智杰. 基于改进PSO算法的人群疏散模型[J]. 系统仿真学报, 2020, 32(6):1000-1008. |
LI Changhua, BI Chenggong, LI Zhijie. Crowd evacuation model based on improved PSO algorithm[J]. Journal of System Simulation, 2020, 32(6):1000-1008. | |
[16] |
HAMILTON W D. Geometry for the selfish herd[J]. Journal of Theoretical Biology, 1971, 31(2):295-311.
doi: 10.1016/0022-5193(71)90189-5 |
[17] | QI J, ZHANG Y B, CHEN Y. Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions[J]. Renewable Energy, 2014(66):337-345. |
[18] |
ALAJMI B N, AHMED K H, FINNEY S J, et al. A maximum power point tracking technique for partially shaded photovoltaic systems in microgrids[J]. IEEE Transactions on Industrial Electronics, 2013, 60(4):1596-1606.
doi: 10.1109/TIE.2011.2168796 |
[19] | ZHENG Y B, WANG W Y, CHEN W R, et al. Research on MPPT of photovoltaic system based on PSO under partial shading condition[C]// Proceedings of the 35th Chinese Control Conference. 2016: 8654-8659. |
[20] | 杨标, 张晓虎. 基于粒子群优化算法和占空比扰动观察法的光伏阵列MPPT控制[J]. 电工技术, 2021(5):32-36. |
YANG Biao, ZHANG Xiaohu. The maximum power point tracking control of photovoltaic array based on particle swarm optimization algorithm and duty cycle disturbance observation method[J]. Electric Engineering, 2021(5):32-36. | |
[21] | ERDEM Z. A review of MPPT algorithms for partial shading conditions[C]// Special Issue of the 3rd International Conference on Computational and Experimental Science and Engineering(ICCESEN 2016). 2017: 1128-1133. |
[22] | ISHAQUE K, SALAM Z. A deterministic particle swarm optimization maximum power point tracker for photvoltaic system under partial shading condition[J]. IEEE Transactions on Industrial Electronics, 2012, 60(8):3195-3206. |
[23] | 倪中华. 人工蜂群算法在云计算系统中的应用[J]. 数学的实践与认识, 2020, 50(24):275-284. |
NI Zhonghua. Application of artificial bee colony algorithm in cloud computing system[J]. Journal of Mathematics in Practice and Theory, 2020, 50(24):275-284. | |
[24] |
SIVAKUMAR P, KADER A A, KALIAVARADHAN Y, et al. Analysis and enhancement of PV efficiency with incremental conductance MPPT technique under non-linear loading conditions[J]. Renewable Energy, 2015, 81:543-550.
doi: 10.1016/j.renene.2015.03.062 |
[25] |
MIYATAKE M, VEERACHARY M, TORIUMI F, et al. Maximum power point tracking of multiple PV arrays:A PSO approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1):367-380.
doi: 10.1109/TAES.2011.5705681 |
[26] |
SUNDARESWARAN K, KUMAR V V, PALANI S. Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions[J]. Renewable Energy, 2015, 75:308-317.
doi: 10.1016/j.renene.2014.09.044 |
[1] | QIAO Lihui, LI Mingche, ZHANG Rui, FANG Zongjie. Capacity configuration method for a battery-SMES hybrid energy storage system in a DC microgrid [J]. Integrated Intelligent Energy, 2023, 45(9): 59-64. |
[2] | ZHANG Siliang, QI Lintong, QU Haowei, ZANG Dehua, ZHOU Wenhan, WANG Lidi. Research on solar assisted air source heat pump heating systems [J]. Integrated Intelligent Energy, 2023, 45(12): 10-19. |
[3] | SUN Guanyu, WANG Yongzhen, YAN Yican, WANG Yufei, ZHANG Ping, ZHANG Lanlan. Application analysis on a geothermal + multi-energy complementary energy system for an oilfield area [J]. Integrated Intelligent Energy, 2023, 45(12): 63-70. |
[4] | WANG Xin, CHEN Zucui, BIAN Zaiping, WANG Yeyao, WU Yumiao. Optimal allocation of a wind‒PV‒battery hybrid system in smart microgrid based on particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2022, 44(6): 52-58. |
[5] | WANG Kangping, ZHANG Xingke, LIU Caihua, SHEN Xicheng, ZHOU Xia. Reactive power and voltage control strategy based on adaptive droop control for wind power plants [J]. Integrated Intelligent Energy, 2022, 44(4): 12-19. |
[6] | GU Jing, ZHANG Haizhen, RUAN Huifeng, LUO Chengxin, LIU Xinxi, WANG Mingxiao. Exploration on the transformation of energy supply enterprises to integrated energy service providers in industrial parks [J]. Integrated Intelligent Energy, 2022, 44(12): 62-67. |
[7] | WANG Yi, YANG Zhiwei, WU Po, LIU Mingyang, PEI Jiecai, LI Chunlei. State estimation for the distribution network with high-proportion distributed photovoltaic energy [J]. Integrated Intelligent Energy, 2022, 44(10): 12-18. |
[8] | ZHANG Xiaoshun, TAN Tian, MENG Die, ZHANG Guiyuan, FENG Yongkun. Study on dynamic surrogate model for MPPT of PV systems [J]. Huadian Technology, 2021, 43(8): 1-10. |
[9] | XING Chenjian,QIAN Yu,ZHOU Ran,WANG Ruilin*. Analysis of utilization modes combining concentrating photovoltaic power generation and photovoltaic residual heat driving carbon capture [J]. Huadian Technology, 2020, 42(4): 84-88. |
[10] | . Optimal configuration of hydrosolar complementary distributed power systems in cities [J]. Huadian Technology, 2020, 42(2): 58-62. |
[11] |
HAN Mailiang.
Water investment and integrated energy coupling utilization and development |
[12] |
ZHAN Guomin,XIAO Yao,ZHANG Hong,ZHAO Xingguo.
Research on control strategy for DCcoupled energy storage converters based on threeport virtual MPPT |
[13] |
WANG Hongyu, WANG Peiming, LI Yanhong, ZHAO Xiaoguang.
Floating photovoltaic power generating system
[J]. Huadian Technology, 2017, 39(3): 74-76.
|
[14] |
YANG Guanglei.
Research on “fishingphotovoltaic complementation” photovoltaic power generation design
[J]. Huadian Technology, 2016, 38(4): 75-77.
|
[15] |
WANG Shandan1, SHEN Zhongtao2.
The study of flexible grid interface equipment for distributed photovoltaic power generation
[J]. Huadian Technology, 2016, 38(4): 68-71.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||