Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (7): 78-86.doi: 10.3969/j.issn.2097-0706.2023.07.009
• Optimal Operation and Control • Previous Articles Next Articles
LI Jing1(), DOU Zhenlan2,*(
), WANG Jiaxiang1(
), ZHANG Chunyan2(
), LU Tao1(
), NI Yaobing1(
)
Received:
2023-04-02
Revised:
2023-06-12
Accepted:
2023-07-25
Published:
2023-07-25
Supported by:
CLC Number:
LI Jing, DOU Zhenlan, WANG Jiaxiang, ZHANG Chunyan, LU Tao, NI Yaobing. Research on power distribution strategy of an RSOC-based wind-photovoltaic-hydrogen energy system[J]. Integrated Intelligent Energy, 2023, 45(7): 78-86.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.07.009
[1] | 王成山, 于波, 肖峻, 等. 平滑可再生能源发电系统输出波动的储能系统容量优化方法[J]. 中国电机工程学报, 2012, 32(16):1-8. |
WANG Chengshan, YU Bo, XIAO Jun, et al. Sizing of energy storage systems for output smoothing of renewable energy systems[J]. Proceedings of the CSEE, 2012, 32(16): 1-8. | |
[2] | 刘坚, 钟财富. 我国氢能发展现状与前景展望[J]. 中国能源, 2019, 41(2):32-36. |
LIU Jian, ZHONG Caifu. Development status and prospect of the hydrogen energy development in China[J]. Energy of China, 2019, 41(2):32-36. | |
[3] | 李洋洋, 邓欣涛, 古俊杰, 等. 碱性水电解制氢系统建模综述及展望[J]. 汽车工程, 2022, 44(4): 567-582. |
LI Yangyang, DENG Xintao, GU Junjie, et al. Comprehensive review and prospect of the modeling of alkaline water electrolysis system for hydrogen production[J]. Automotive Engineering, 2022, 44(4): 567-582. | |
[4] |
何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
doi: 10.16085/j.issn.1000-6613.2021-0429 |
HE Zexing, SHI Chengxiang, CHEN Zhichao, et al. Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(9):4762-4773.
doi: 10.16085/j.issn.1000-6613.2021-0429 |
|
[5] |
NI M, LEUNG M K H, LEUNG D Y C. Parametric study of solid oxide steam electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32(13):2305-2313.
doi: 10.1016/j.ijhydene.2007.03.001 |
[6] | 吴锋棒. 风光氢储综合能源系统优化配置[J]. 山东化工, 2020, 49(16):135-138. |
WU Fengbang. Optimized configuration of wind-solar hydrogen storage integrated energy system[J]. Shangdong Chemical Industry, 2020, 49(16):135-138. | |
[7] |
YANG Z, ZHANG G, LIN B. Performance evaluation and optimum analysis of a photovoltaic-driven electrolyzer system for hydrogen production[J]. International Journal of Hydrogen Energy, 2015, 40(8):3170-3179.
doi: 10.1016/j.ijhydene.2015.01.028 |
[8] | 周建力, 乌云娜, 董昊鑫, 等. 计及电动汽车随机充电的风-光-氢综合能源系统优化规划[J]. 电力系统自动化, 2021, 45(24):30-40. |
ZHOU Jianli, WU Yunna, DONG Haoxin, et al. Optimal planning of wind-photovoltaic-hydrogen integrated energy system considering random charing of electric vehicles[J]. Automation of Electric Power Systems, 2021, 45(24): 30-40. | |
[9] | 熊宇峰, 司杨, 郑天文, 等. 基于主从博弈的工业园区综合能源系统氢储能优化配置[J]. 电工技术学报, 2021, 36(3):507-516. |
XIONG Yufeng, SI Yang, ZHENG Tianwen, et al. Optimal configuration of hydrogen storage in industrial park integrated energy system based on Stackelberg game[J]. Transactions of China Electrotechnical Society, 2021, 36(3):507-516. | |
[10] | 李梓丘, 乔颖, 鲁宗相. 海上风电-氢能系统运行模式分析及配置优化[J]. 电力系统自动化, 2022, 46(8):104-112. |
LI Ziqiu, QIAO Ying, LU Zongxiang. Operation mode analysis and configuraton optimization of offshore wind-hydrogen system[J]. Automation of Electric Power Systems, 2022, 46(8):104-112. | |
[11] | 郭梦婕, 严正, 周云, 等. 含风电制氢装置的综合能源系统优化运行[J]. 中国电力, 2020, 53(1):115-123. |
GUO Mengjie, YAN Zheng, ZHOU Yun, et al. Optimized operation design of integrated energy system with with power hydrogen production[J]. Electric Power, 2020, 53(1):115-123. | |
[12] | 孔令国, 蔡国伟, 李龙飞, 等. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报, 2018, 33(14):3371-3384. |
KONG Lingguo, CAI Guowei, LI Longfei, et al. Online energy control strategy and experimental platform of integrated energy system of wind, photovoltaic and hydrogen[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3371-3384. | |
[13] | 韩子娇, 李正文, 张文达, 等. 计及光伏出力不确定性的氢能综合能源系统经济运行策略[J]. 电力自动化设备, 2021, 41(10): 99-106. |
HAN Ziqiao, LI Zhengwen, ZHANG Wenda, et al. Economic operation strategy of hydrogen integrated energy system considering uncertainty of photovoltaic output power[J]. Automation of Electric power Systems, 2021, 41(10): 99-106. | |
[14] | 黄健, 候健生, 季克, 等. 基于电热氢混合储能的综合能源系统的能量管理优化研究[J]. 电工电能新技术, 2022, 41(12): 9-19. |
HUANG Jian, HOU Jiansheng, JI Ke, et al. Research on energy management optimization of integrated energy system based on electric-thermal-hydrogen energy storage[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(12): 9-19. | |
[15] | 沈主浮, 窦真兰, 张春雁, 等. 风光氢综合能源系统设计及运行集成优化[J]. 能源技术, 2022, 43(1): 47-53. |
SHEN Zhufu, DOU Zhenlan, ZHANG Chunyan, et al. Design and operation integrated optimization of wind-solar-hydrogen integrated energy system[J]. Energy Technology, 2022, 43(1):47-53. | |
[16] |
FRANK M, DEJA R, PETERS R, et al. Bypassing renewable variability with a reversible solid oxide cell plant[J]. Applied Energy, 2018, 217: 101-112.
doi: 10.1016/j.apenergy.2018.02.115 |
[17] | FEI X, XUEJUN R, RAZMJOOY N. Optimal configuration and energy management for combined solar chimney, solid oxide electrolysis, and fuel cell:A case study in Iran[J]. Energy Sources,Part A:Recovery, Utilization,and Environmental Effects, 2019, 1-21. |
[18] | LI G, YUAN B, GE M, et al. Capacity configuration optimization of a hybrid renewable energy system with hydrogen storage[J]. International Journal of Green Energy, 2022, 1-17. |
[19] | 高赐威, 王崴, 陈涛. 基于可逆固体氧化物电池的电氢一体化能源站容量规划[J]. 中国电机工程学报, 2022, 17(1): 6155-6169. |
GAO Ciwei, WANG Wai, CHEN Tao. Capacity planning of electric-hydrogen integrated energy station based on reversible solid oxide battery[J]. Proceedings of the CSEE, 2022, 17(1): 6155-6169. | |
[20] |
欧阳斌, 袁志昌, 陆超, 等. 考虑源-荷-储多能互补的冷-热-电综合能源系统优化运行研究[J]. 发电技术, 2020, 41(1): 19-29.
doi: 10.12096/j.2096-4528.pgt.19100 |
OYANG Bin, YUAN Zhichang, LU Chao, et al. Research on optimal operation of cold-thermal-electric integrated energy system considering source-load-storage multi-energy complementarity[J]. Power Generation Technology, 2020, 41(1):19-29.
doi: 10.12096/j.2096-4528.pgt.19100 |
|
[21] |
HASSANZADEHFARD H, TOORYAN F, COLLINS E R, et al. Design and optimum energy management of a hybrid renewable energy system based on efficient various hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(55):30113-30128.
doi: 10.1016/j.ijhydene.2020.08.040 |
[22] |
LI G, XIAO G, GUAN C, et al. Assessment of thermodynamic performance of a 20 kW high-temperature electrolysis system using advanced exergy analysis[J]. Fuel Cell, 2021, 21(6):550-565.
doi: 10.1002/fuce.v21.6 |
[23] |
姚芳, 杨晓娜, 葛磊蛟, 等. 风-光-氢能源系统容量优化配置研究[J]. 综合智慧能源, 2022, 44(5):56-63.
doi: 10.3969/j.issn.2097-0706.2022.05.006 |
YAO Fang, YANG Xiaona, GE Leijiao, et al. Optimization of capacity allocation scheme for wind-solar-hydrogen energy system[J]. Integrated Intelligent Energy, 2022, 21(6):56-63. |
[1] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||