Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (2): 71-78.doi: 10.3969/j.issn.2097-0706.2025.02.007
• New Power System Scheduling based on AI • Previous Articles Next Articles
ZHANG Yuanxi(), YANG Guohua*(
), YANG Na, LI Zhen, MA Xin, LIU Haorui, NAN Shaoshuai
Received:
2024-10-15
Revised:
2024-11-21
Published:
2025-02-25
Contact:
YANG Guohua
E-mail:2577621195@qq.com;ygh@nxu.edu.cn
Supported by:
CLC Number:
ZHANG Yuanxi, YANG Guohua, YANG Na, LI Zhen, MA Xin, LIU Haorui, NAN Shaoshuai. Photovoltaic power prediction based on K-means clustering and the LSTM-SVR-DE model[J]. Integrated Intelligent Energy, 2025, 47(2): 71-78.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.02.007
[1] | 朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(8):3027-3048. |
ZHU Qiongfeng, LI Jiateng, QIAO Ji, et al. Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43(8):3027-3048. | |
[2] | 汪鸿, 朱正甲, 陈建华, 等. 基于人工智能技术与物理方法结合的新能源功率预测研究[J]. 高电压技术, 2023, 49(S1):111-117. |
WANG Hong, ZHU Zhengjia, CHEN Jianhua, et al. Research on new energy power prediction based on artificial intelligence technology and physical method[J]. High Voltage Engineering, 2023, 49(S1):111-117. | |
[3] | 王彪, 吕洋, 陈中, 等. 考虑信息时移的分布式光伏机理-数据混合驱动短期功率预测[J]. 电力系统自动化, 2022, 46(11):67-74. |
WANG Biao, LYU Yang, CHEN Zhong, et al. Hybrid mechanism-data-driven short-term power forecasting of distributed photovoltaic considering information time shift[J]. Automation of Electric Power Systems, 2022, 46(11):67-74. | |
[4] | 陈凡, 李智, 丁津津, 等. 考虑光伏机理与数据驱动结合的短期功率预测[J]. 科学技术与工程, 2023, 23(20):8686-8692. |
CHEN Fan, LI Zhi, DING Jinjin, et al. Consider short-term power prediction combining photovoltaic mechanism and data-driven[J]. Science Technology and Engineering, 2023, 23(20):8686-8692. | |
[5] | 李楠, 刘佳佳, 赖心怡, 等. 基于时间序列神经分层插值模型的光伏功率超短期多步预测[J]. 智慧电力, 2024, 52(4):69-77. |
LI Nan, LIU Jiajia, LAI Xinyi, et al. Ultra-short-term multi-step forecasting of photovoltaic power based on time series neural hierarchical interpolation model[J]. Smart Power, 2024, 52(4):69-77. | |
[6] | 时珉, 许可, 王珏, 等. 基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测[J]. 电工技术学报, 2021, 36(11):2298-2305. |
SHI Min, XU Ke, WANG Jue, et al. Short-term photovoltaic power forecast based on grey relational analysis and GeoMAN model[J]. Transactions of China Electrotechnical Society, 2021, 36(11):2298-2305. | |
[7] | 周鑫, 李燕, 曾永辉, 等. 基于SARIMAX-SVR的光伏发电功率预测[J]. 电力系统及其自动化学报, 2024, 36(5):1-8. |
ZHOU Xin, LI Yan, ZENG Yonghui, et al. Forecasting of photovoltaic power generation based on SARIMAX-SVR[J]. Proceedings of the CSU-EPSA, 2024, 36(5):1-8. | |
[8] |
殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7):12-20.
doi: 10.3969/j.issn.2097-0706.2024.07.002 |
YIN Linfei, MENG Yujie. Short-term wind power forecasting method based on DenseNe convolutional neural network[J]. Integrated Intelligent Energy, 2024, 46(7):12-20.
doi: 10.3969/j.issn.2097-0706.2024.07.002 |
|
[9] |
袁俊球, 王迪, 谢小锋, 等. 基于广义天气分类的ICEEMDAN-LSTM网络光伏发电功率短期预测[J]. 综合智慧能源, 2024, 46(9):53-60.
doi: 10.3969/j.issn.2097-0706.2024.09.007 |
YUAN Junqiu, WANG Di, XIE Xiaofeng, et al. Short-term photovoltaic power forecasting based on generalized weather classification and ICEEMDAN-LSTM network[J]. Integrated Intelligent Energy, 2024, 46(9):53-60.
doi: 10.3969/j.issn.2097-0706.2024.09.007 |
|
[10] |
盛瑞祥, 张啸宇. 基于概率TCN-Transformer的短期光伏功率预测模型[J]. 综合智慧能源, 2024, 46(11):10-18.
doi: 10.3969/j.issn.2097-0706.2024.11.002 |
SHENG Ruixiang, ZHANG Xiaoyu. Short-term photovoltaic power forecasting model based on probabilistic TCN-transformer[J]. Integrated Intelligent Energy, 2024, 46(11):10-18.
doi: 10.3969/j.issn.2097-0706.2024.11.002 |
|
[11] | 殷豪, 李奕甸, 谢智锋, 等. 混合图神经网络和门控循环网络的短期光伏功率预测[J]. 太阳能学报, 2024, 45(3):523-532. |
YIN Hao, LI Yidian, XIE Zhifeng, et al. Short-term photovoltaic power prediction method based on mixed graph neural network and gated recurrent unit network[J]. Acta Energiae Solaris Sinica, 2024, 45(3):523-532. | |
[12] |
李芬, 孙凌, 王亚维, 等. 基于CEEMDAN-GSA-LSTM和SVR的光伏功率短期区间预测[J]. 上海交通大学学报, 2024, 58(6):806-818.
doi: 10.16183/j.cnki.jsjtu.2022.511 |
LI Fen, SUN Ling, WANG Yawei, et al. Short-term interval forecasting of photovoltaic power based on CEEMDAN-GSA-LSTM and SVR[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6):806-818. | |
[13] | 黄牧涛, 邢芳菲, 陈兴邦, 等. 基于K-means聚类和极限学习机组合算法的短期光伏功率预测[J]. 水电能源科学, 2024, 42(2):217-220,216. |
HUANG Mutao, XING Fangfei, CHEN Xingbang, et al. Short-term PV power prediction based on K-means clustering and extreme learning machine combination algorithm[J]. Water Resources and Power, 2024, 42(2): 217-220,216. | |
[14] | 唐雅洁, 林达, 倪筹帷, 等. 基于XGBoost的双层协同实时校正超短期光伏预测[J]. 电力系统自动化, 2021, 45(7):18-27. |
TANG Yajie, LIN Da, NI Chouwei, et al. XGBoost based bi-layer collaborative real-time calibration for ultra-short-term photovoltaic prediction[J]. Automation of Electric Power Systems, 2021, 45(7):18-27. | |
[15] | 何威, 苏中元, 史金林, 等. 基于双重注意力GRU与相似修正的光伏功率预测[J]. 太阳能学报, 2024, 45(3):480-487. |
HE Wei, SU Zhongyuan, SHI Jinlin, et al. Photovoltaic power forecasting based on dual-attention-GRU and similarity modification[J]. Acta Energiae Solaris Sinica, 2024, 45(3):480-487. | |
[16] | 王海军, 居蓉蓉, 董颖华. 基于时空关联特征与B-LSTM模型的分布式光伏功率区间预测[J]. 中国电力, 2024, 57(7):74-80. |
WANG Haijun, JU Rongrong, DONG Yinghua. Distributed photovoltaic power interval prediction based on spatio-temporal correlation feature and B-LSTM model[J]. Electric Power, 2024, 57(7):74-80. | |
[17] |
王东风, 刘婧, 黄宇, 等. 结合太阳辐射量计算与CNN-LSTM组合的光伏功率预测方法研究[J]. 太阳能学报, 2024, 45(2):443-450.
doi: 10.19912/j.0254-0096.tynxb.2022-1542 |
WANG Dongfeng, LIU Jing, HUANG Yu, et al. Photovoltaic power prediction method combination solar radiation calculation and CNN-LSTM[J]. Acta Energiae Solaris Sinica, 2024, 45(2):443-450.
doi: 10.19912/j.0254-0096.tynxb.2022-1542 |
|
[18] | FEI W, XUAN Z M, ZHAO Z, et al. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework[J]. Energy Conversion and Management, 2020, 212:112766. |
[19] | 李鹏钦, 张长胜, 李英娜, 等. 改进Stacking算法的光伏发电功率预测[J]. 应用科学学报, 2022, 40(2): 288-301. |
LI Pengqin, ZHANG Changsheng, LI Yingna, et al. Photovoltaic power forecast improved Stacking algorithm[J]. Journal of Applied Sciences, 2022, 40(2):288-301. | |
[20] |
何之倬, 张颖, 郑刚, 等. 基于极限学习机模型参数优化的光伏功率区间预测技术[J]. 上海交通大学学报, 2024, 58(3):285-294.
doi: 10.16183/j.cnki.jsjtu.2022.338 |
HE Zhizhuo, ZHANG Ying, ZHENG Gang, et al. Interval prediction technology of photovoltaic power based on parameter optimization of extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3):285-294. | |
[21] | ZANG H X, CHENG L L, TAO D, et al. Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning[J]. Electrical Power and Energy Systems, 2020, 118:105790. |
[22] | ZANG H X, LING L, LI S, et al. Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations[J]. Renewable Energy, 2020, 160:26-41. |
[23] |
谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8):75-81.
doi: 10.19912/j.0254-0096.tynxb.2021-0005 |
TAN Haiwang, YANG Qiliang, XING Jianchun, et al. Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta Energiae Solaris Sinica, 2022, 43(8):75-81.
doi: 10.19912/j.0254-0096.tynxb.2021-0005 |
|
[24] | AGGA A, ABBOU A, LABBADI M, et al. CNN-LSTM:An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production[J]. Electric Power Systems Research, 2022, 208:107908. |
[25] | SI Z Y, MING Y, YU Y X, et al. Photovoltaic power forecast based on satellite images considering effects of solar position[J]. Applied Energy, 2021, 302:117514. |
[1] | GAO Ming, HAO Yan. Ultra-short-term load forecasting based on BiLSTM network and error correction [J]. Integrated Intelligent Energy, 2023, 45(1): 31-40. |
[2] | LIU Wenhui, YAN Bowen, WU Jiang, REN Yijun, KONG Weizheng, CHEN Jiyu. Intelligent prediction model of CFB boiler bed temperature based on parallel control theory [J]. Integrated Intelligent Energy, 2022, 44(3): 50-57. |
[3] | SUN Hongshuo 1, HU Yanlin 2. Improved algorithm for reconstruction of power distribution network containing distributed power sources [J]. Huadian Technology, 2013, 35(12): 4-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||