Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (6): 57-73.doi: 10.3969/j.issn.2097-0706.2025.06.007
• Intelligent Algorithms for New Energy • Previous Articles Next Articles
LI Xiaoninga(), SUN Naa(
), HUANG Aminb(
), DONG Haiyinga,*(
)
Received:
2025-02-05
Revised:
2025-03-20
Published:
2025-06-25
Contact:
DONG Haiying
E-mail:lxn210838@163.com;sunna@mail.lzjtu.cn;ham_lzjtu@163.com;hydong@mail.lzjtu.cn
Supported by:
CLC Number:
LI Xiaoning, SUN Na, HUANG Amin, DONG Haiying. Fuzzy active disturbance rejection control of PEMFC air intake unit based on snake optimization algorithm[J]. Integrated Intelligent Energy, 2025, 47(6): 57-73.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.06.007
Table 1
Fuzzy logic rules
E | ΔE | ||||||
---|---|---|---|---|---|---|---|
NL | NM | NS | ZE | PS | PM | PL | |
NL | PL/NL | PM/NL | PM/NM | PS/NM | PS/NS | ZE/ZE | ZE/ZE |
NM | PM/NL | PM/NL | PS/NM | PS/NS | ZE/NS | ZE/ZE | NS/ZE |
NS | PM/NL | PS/NM | PS/NS | ZE/NS | ZE/ZE | NS/PS | NM/PS |
ZE | PM/NM | PS/NM | PS/NS | ZE/ZE | NS/PS | NS/PM | NM/PM |
PS | PL/NM | PS/NS | ZE/ZE | NS/PS | NS/PS | NS/PM | NM/PL |
PM | PS/ZE | ZE/ZE | NS/PS | NS/PS | NS/PM | NM/PL | NM/PL |
PL | ZE/ZE | NS/ZE | NS/PS | NS/PM | NM/PM | NM/PL | NL/PL |
Table 5
Comparison of optimization results for benchmarking functions
项目 | 基准测试函数 | ||||
---|---|---|---|---|---|
F1 | F2 | F3 | F4 | ||
PSO | 平均值 | 2.157×10-5 | 1.046×10-1 | 5.439×10-3 | 7.574×10-6 |
最优值 | 1.054×10-6 | 1.829×10-2 | 3.382×10-4 | 5.129×10-8 | |
标准差 | 3.754×10-5 | 2.785×10-2 | 7.143×10-3 | 6.729×10-6 | |
SO | 平均值 | 3.057×10-2 | 4.527×10-3 | 5.147×10-13 | 6.754×10-4 |
最优值 | 1.276×10-3 | 2.711×10-4 | 4.441×10-15 | 9.389×10-6 | |
标准差 | 1.056×10-2 | 3.480×10-3 | 3.724×10-13 | 4.623×10-4 | |
ISO | 平均值 | 9.473×10-8 | 5.267×10-4 | 5.178×10-14 | 7.442×10-9 |
最优值 | 3.181×10-9 | 3.377×10-5 | 8.882×10-16 | 9.521×10-11 | |
标准差 | 5.418×10-8 | 3.713×10-4 | 4.135×10-14 | 4.176×10-9 |
Table 7
Adjustment performance of different control methods on variables
控制变量 | 控制方法 | OS | AT/s | ||
---|---|---|---|---|---|
流量/% | 压力/V | 流量 | 压力 | ||
空气流量、压力解耦 | 未解耦 | 26.91 | 0 | 5.280 0 | 14.07 |
PI | 3.74 | 0 | 6.030 0 | 13.36 | |
Fuzzy-PI | 2.31 | 0 | 1.750 0 | 9.67 | |
恒定OER | PID | 24.79 | 2.436 2 | ||
fuzzyADRC | 20.21 | 4.748 5 | |||
ISO-fuzzyADRC | 10.06 | 0.514 6 | |||
变OER | PID | 6.17 | 16.471 4 | ||
fuzzyADRC | 2.05 | 11.427 5 | |||
ISO-fuzzyADRC | 0 | 7.103 6 | |||
Δpca | PID | 13.98 | 7.375 8 | ||
fuzzyADRC | 0 | 4.937 6 | |||
ISO-fuzzyADRC | 5.07 | 1.428 5 |
[1] | 郝俊红, 冯晓龙, 杨云溪, 等. 分布式换能系统的概念、架构与规划分析[J]. 中国电机工程学报, 2024, 44(10): 3885-3897. |
HAO Junhong, FENG Xiaolong, YANG Yunxi, et al. Concept, architecture and planning analysis of distributed energy exchange system[J]. Chinese Journal of Electrical Engineering, 2024, 44(10): 3885-3897. | |
[2] | 郑玉荣, 靳军宝, 白光祖, 等. 氢燃料电池关键技术发展态势研究[J]. 现代化工, 2024, 44(11): 12-17. |
ZHENG Yurong, JIN Junbao, BAI Guangzu, et al. Research on development trend of key technologies for hydrogen fuel cells[J]. Modern Chemical Industry, 2024, 44(11): 12-17. | |
[3] | 刘涛, 郭家新, 韩莹, 等. 氢燃料电池公交研究文献综述及展望[J]. 交通运输系统工程与信息, 2024, 24(5):1-13,23. |
LIU Tao, GUO Jiaxin, HAN Ying, et al. Hydrogen fuel cell bus: A literature review and prospects[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(5): 1-13, 23. | |
[4] | 王丽, 李蓓, 张帆, 等. 基于增益调度模型预测控制的SOFC-GT混合动力系统温度控制[J]. 综合智慧能源, 2022, 44(10): 42-49. |
WANG Li, LI Bei, ZHANG Fan, et al. Temperature control for a SOFC-GT hybrid power system based on gain scheduling model predictive control[J]. Integrated Intelligent Energy, 2022, 44(10): 42-49. | |
[5] | 胡翀, 赵袁, RAZA Ali. 基于单层电堆形式的质子交换膜燃料电池仿真模拟研究及优化[J]. 综合智慧能源, 2022, 44(8): 91-96. |
HU Chong, ZHAO Yuan, RAZA Ali, et al. Simulation and optimization for the PEMFC based on single-cell stack structure[J]. Integrated Intelligent Energy, 2022, 44(8): 91-96. | |
[6] | 焦志筱, 姜琦, 熊树生, 等. 基于自抗扰的PEMFC空气供给系统流量和压力控制[J]. 现代机械, 2024(6): 5-11. |
JIAO Zhixiao, JIANG Qi, XIONG Shusheng, et al. Air flow and pressure control of PEMFC air supply system based on ADRC[J]. Modern Machinery, 2024(6): 5-11. | |
[7] | 薛国庆, 袁裕鹏, 李娜, 等. PEMFC系统空气流量与压力前馈PID协同控制[J]. 武汉理工大学学报, 2024, 46(9): 127-135. |
XUE Guoqing, YUAN Yupeng, LI Na, et al. Co-control of air flow and pressure feed-forward PID for PEMFC system[J]. Journal of Wuhan University of Technology, 2024, 46(9): 127-135. | |
[8] | 陈家城. 燃料电池空气供给系统建模与控制[J]. 机电技术, 2023, 46(3): 70-73, 91. |
CHEN Jiacheng. Modeling and control of fuel cell air supply system[J]. Mechanical & Electrical Technology, 2023, 46(3): 70-73, 91. | |
[9] | WANG Y L, WANG Y F. Pressure and oxygen excess ratio control of PEMFC air management system based on neural network and prescribed performance[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 105850. |
[10] | ZHAO D D, XIA L, DANG H B, et al. Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy[J]. Energy Conversion and Management, 2022, 253: 115159. |
[11] | ZENG T, XIAO L, CHEN J R, et al. Feedforward-based decoupling control of air supply for vehicular fuel cell system: Methodology and experimental validation[J]. Applied Energy, 2023, 335: 120756. |
[12] | 孙田. 重卡用大功率燃料电池发动机空气供给控制策略研究[D]. 北京: 北京交通大学, 2020. |
SUN Tian. Research on air supply control strategy of high-power fuel cell engine for heavy trucks[D]. Beijing: Beijing Jiaotong University, 2020. | |
[13] | XU J H, ZHANG B X, YAN H Z, et al. A decoupling control of air supply for the PEM fuel cell with slide mode-active disturbance rejection controller[J]. Sustainable Energy Technologies and Assessments, 2024, 72: 104051. |
[14] | ZHAO D D, LI F, MA R, et al. An unknown input nonlinear observer based fractional order PID control of fuel cell air supply system[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5523-5532. |
[15] | MA L, ZHAO H, QU Y, et al. Reduced‐order active disturbance rejection control method for PEMFC air intake system based on the estimation of oxygen excess ratio[J]. IET Renewable Power Generation, 2023, 17(4): 951-963. |
[16] | LI J W, YU T. Intelligent controller based on distributed deep reinforcement learning for PEMFC air supply system[J]. IEEE Access, 2021, 9: 7496-7507. |
[17] | 齐鲲鹏, 陈超帆, HassanAli. 质子交换膜燃料电池阴阳极恒压差控制策略研究[J]. 客车技术与研究, 2023, 45(4): 1-6. |
QI Kunpeng, CHEN Chaofan, HASSAN A. Study on control strategy of cathode and anode stable pressure difference in proton exchange membrane fuel cell[J]. Bus & Coach Technology and Research, 2023, 45(4): 1-6. | |
[18] | ZHU J, ZHANG P, LI X, et al. Robust oxygen excess ratio control of PEMFC systems using adaptive dynamic programming[J]. Energy Reports, 2022, 8: 2036-2044. |
[19] | GHASEMI J, RAKHTALA S M, RASEKHI J, et al. PEM fuel cell system to extend the stack life based on a PID-PSO controller design[J]. Complex Engineering Systems, 2022, 2(4):20517. |
[20] | YILDIRIM B, GHEISARNEJAD M, ÖZDEMIR M T, et al. Multi-agent fuzzy Q-learning-based PEM fuel cell air-feed system control[J]. International Journal of Hydrogen Energy, 2024, 75: 354-362. |
[21] | LIU J X, GAO Y B, SU X J, et al. Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique[J]. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1129-1138. |
[22] | ZHAO D D, XU L C, HUANGFU Y G, et al. Semi-physical modeling and control of a centrifugal compressor for the air feeding of a PEM fuel cell[J]. Energy Conversion and Management, 2017, 154: 380-386. |
[23] | CHEN H C, LIU Y H, DENG C H, et al. Research on improving dynamic response ability of 30 kW real fuel cell system based on operating parameter optimization[J]. International Journal of Hydrogen Energy, 2023, 48(3): 1075-1089. |
[24] | JIN L J, XU J C, WANG L Z. A sensorless control method for energy recovery of EGTAC to improve PEMFC efficiency[J]. IEEE Access, 2024, 12: 34160-34173. |
[25] | 肖仰淦, 吴肖龙, 李曦. 基于ADRC的PEMFC系统阴极相对湿度和氧气过量比控制[J]. 太阳能学报, 2023, 44(12): 499-509. |
XIAO Yanggan, WU Xiaolong, LI Xi. Control of cathode relative humidity and oxygen excess ratio in PEMFC system based on ADRC[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 499-509. | |
[26] | 袁昊, 张铁臣, 杨祖勇, 等. 基于自抗扰原理的燃料电池阳极压力控制研究[J]. 内燃机与配件, 2023(6): 14-18. |
YUAN Hao, ZHANG Tiechen, YANG Zuyong, et al. Research on anode pressure control of PEMFC based on active disturbance rejection principle[J]. Internal Combustion Engine & Parts, 2023(6): 14-18. | |
[27] | 权浩迪, 刘勇国, 傅翀, 等. 多策略改进的蛇优化算法[J]. 计算机技术与发展, 2024, 34(5): 117-125. |
QUAN Haodi, LIU Yongguo, FU Chong, et al. Improved snake optimizer of multi-strategy[J]. Computer Technology and Development, 2024, 34(5): 117-125. | |
[28] | 谢海波, 陈晗奔, 刘建彬, 等. 基于ITAE准则的大流量平衡阀关键参数优化研究[J]. 液压与气动, 2019, 43(3): 43-48. |
XIE Haibo, CHEN Hanben, LIU Jianbin, et al. Key parameters optimization based on ITAE criterion for large flow load control valve[J]. Chinese Hydraulics & Pneumatics, 2019, 43(3): 43-48. | |
[29] | 班多晗, 吕鑫, 王鑫元. 基于一维混沌映射的高效图像加密算法[J]. 计算机科学, 2020, 47(4): 278-284. |
BAN Duohan, LV Xin, WANG Xinyuan. Efficient image encryption algorithm based on 1D chaotic map[J]. Computer Science, 2020, 47(4): 278-284. | |
[30] | JIA H M, ZHANG J R, RAO H H, et al. Improved sandcat swarm optimization algorithm for solving global optimum problems[J]. Artificial Intelligence Review, 2024, 58:10986. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||