Integrated Intelligent Energy ›› 2021, Vol. 43 ›› Issue (12): 1-9.doi: 10.3969/j.issn.1674-1951.2021.12.001
• Energy Conservation and Environmental Protection • Next Articles
CHEN Shaoliang1(), CHENG Hongyan2(
), CHEN Beiyang2(
), Abdul Ghani RAZAQPUR1,3,*(
), HUANG Jinhui1,*(
)
Received:
2021-04-28
Revised:
2021-09-09
Published:
2021-12-25
Contact:
Abdul Ghani RAZAQPUR,HUANG Jinhui
E-mail:chenshaoliang@mail.nankai.edu.cn;chenhy@chec.com.cn;chenby@chec.com.cn;razaqpu@mcmaster.ca;huangj@nankai.edu.cn
CLC Number:
CHEN Shaoliang, CHENG Hongyan, CHEN Beiyang, Abdul Ghani RAZAQPUR, HUANG Jinhui. Effects of per- and polyfluoroalkyl substances on health and ecosystem and their treatment technology[J]. Integrated Intelligent Energy, 2021, 43(12): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.12.001
[1] | BANKS R E, SMART B E, TATLOW J C. Organofluorine chemistry:Principles and commercial applications[M]. Germany:Springer Science & Business Media, 2013. |
[2] |
GUELFO J L, ADAMSON D T. Evaluation of a national data set for insights into sources,composition,and concentrations of per- and polyfluoroalkyl substances(PFASs) in U.S. drinking water[J]. Environmental Pollution, 2018, 236:505-513.
doi: 10.1016/j.envpol.2018.01.066 |
[3] |
BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment:Terminology,classification,and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4):513-541.
doi: 10.1002/ieam.258 |
[4] |
KISSA E. Fluorinated surfactants and repellents[J]. Textile Research Journal, 2001, 71(8):750.
doi: 10.1177/004051750107100820 |
[5] |
CHAO L T, WANG B, HUANG J, et al. Emission inventory for PFOS in China:Review of past methodologies and suggestions[J]. The Scientific World Journal, 2011, 11:1963-1980.
doi: 10.1100/2011/868156 |
[6] |
KANNAN K, CORSOLINI S, FALANDYSZ J, et al. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries[J]. Environmental Science & Technology, 2004, 38(17):4489-4495.
doi: 10.1021/es0493446 |
[7] |
LINDSTROM A B, STRYNAR M J, DELINSKY A D, et al. Application of WWTP biosolids and resulting perfluorinated compound contamination of surface and well water in Decatur,Alabama,USA[J]. Environmental Science & Technology, 2011, 45(19):8015-8021.
doi: 10.1021/es1039425 |
[8] | ALSMEYER Y W, CHILDS W V, FLYNN R M, et al. Electrochemical fluorination and its applications[J]. In Organofluorine Chemistry, 1994:121-143. |
[9] |
WANG Z, DEWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances(PFASs)?[J]. Environmental Science and Technology, 2017, 51:2508-2518.
doi: 10.1021/acs.est.6b04806 |
[10] |
KOTTHOFF M, MÜLLER J, JÜRLING H, et al. Perfluoroalkyl and polyfluoroalkyl substances in consumer products[J]. Environmental Science and Pollution Research, 2015, 22(9):14546-14559.
doi: 10.1007/s11356-015-4202-7 |
[11] | BERGER U, HERZKE D. Per- and polyfluorinated alkyl substances(PFAS) extracted from textile samples[J]. Organohalogen Compound, 2006, 68:2023-2026. |
[12] |
PREVEDOUROS K, COUSINS I T, BUCK R C, et al. Sources,fate and transport of perfluorocarboxylates[J]. Environmental Science and Technology, 2006, 40(1):32-44.
doi: 10.1021/es0512475 |
[13] |
RENNER R. Growing concern over perfluorinated chemicals[J]. Environmental Science and Technology, 2001, 35(7):154A-160A.
doi: 10.1021/es012317k |
[14] | POULSEN P B, JENSEN A A, WALLSTROM E, et al. More environmentally friendly alternatives to PFOS-compounds and PFOA[J]. Danish Environmental Protection Agency Environmental Project, 2005: 1013. |
[15] | Concawe. Environmental fate and effects of poly- and perfluoroalkyl substances(PFAS)[R]. Conservation of Clean Air and Water in Europe.Auderghem,Belgium, 2016. |
[16] | Gore-Tex. Our History[R]. 2017. |
[17] | US naval research laboratory. Aqueous film-forming foam[R]. 2017. |
[18] | Environmental Pollution Centers. What are PFO and PFOS and how dangerous are they?[R]. 2018. |
[19] |
HU X C, DASSUNCAO C, ZHANG X, et al. Can profiles of poly- and Perfluoroalkyl substances(PFASs) in human serum provide information on major exposure sources[J]. Environmental Health, 2018, 17(1):11.
doi: 10.1186/s12940-018-0355-4 |
[20] | EPA. Drinking water health advisories for PFOA and PFOS[R]. 2018. |
[21] |
STEENLAND K, TINKER S, SHANKAR A, et al. Association of perfluorooctanoic acid(PFOA) and perfluorooctane sulfonate(PFOS) with uric acid among adults with elevated community exposure to PFOA[J]. Environmental Health Perspectives, 2009, 118(2):229-233.
doi: 10.1289/ehp.0900940 |
[22] |
YAO X, ZHONG L. Genotoxic risk and oxidative DNA damage in HepG2 cells exposed to perfluorooctanoic acid[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2005, 587(1):38-44.
doi: 10.1016/j.mrgentox.2005.07.010 |
[23] |
PANARETAKIS T, SHABALINA I G, GRANDÉR D, et al. Reactive oxygen species and mitochondria mediate the induction of apoptosis in human hepatoma HepG2 cells by the rodent peroxisome proliferator and hepatocarcinogen,perfluorooctanoic acid[J]. Toxicology and Applied Pharmacology, 2001, 173(1):56-64.
doi: 10.1006/taap.2001.9159 |
[24] | NJ Department of Environmental Protection. Perfluorinated chemicals(PFCs) emerging drinking water contaminants[C]. Delaware River Basin Commision-Toxic Advisory Commision.West Trenton, 2013. |
[25] | WEBSTER G. Potential human health effects of perfluorinated chemicals(PFCs)[R]. 2010. |
[26] |
AUSTIN M E, KASTURI B S, BARBER M, et al. Neuroendocrine effects of perfluorooctane sulfonate in rats[J]. Environmental Health Perspectives, 2003, 111(12):1485.
doi: 10.1289/ehp.6128 |
[27] |
BOUDREAU T M, SIBLEY P K, MABURY S A, et al. Laboratory evaluation of the toxicity of perfluorooctane sulfonate(PFOS) on Selenastrum capricornutum,Chlorella vulgaris,Lemna gibba,Daphnia magna,and Daphnia pulicaria[J]. Archives of Environmental Contamination and Toxicology, 2003, 44(3):307-313.
doi: 10.1007/s00244-002-2102-6 |
[28] |
LAMPERT D J, FRISCH M A, SPEITEL JR G E. Removal of perfluorooctanoic acid and perfluorooctane sulfonate from wastewater by ion exchange[J]. Practice Periodical of Hazardous,Toxic,and Radioactive Waste Management, 2007, 11(1):60-68.
doi: 10.1061/(ASCE)1090-025X(2007)11:1(60) |
[29] |
WEI C, WANG Q, SONG X, et al. Distribution,source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas[J]. Ecotoxicology and Environmental Safety, 2018, 152:141-150.
doi: 10.1016/j.ecoenv.2018.01.039 |
[30] |
LECHNER M, KNAPP H. Carryover of perfluorooctanoic acid(PFOA) and perfluorooctane sulfonate(PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots(Daucus carota ssp.Sativus),potatoes(Solanum tuberosum),and cucumbers(Cucumis Sativus)[J]. Journal of Agricultural and Food Chemistry, 2011, 59(20):11011-11018.
doi: 10.1021/jf201355y |
[31] | VECITIS C D, PARK H, CHENG J, et al. Treatment technologies for aqueous perfluorooctanesulfonate(PFOS) and perfluorooctanoate(PFOA)[J]. Frontiers of Environmental Science & Engineering in China, 2009, 3(2):129-151. |
[32] |
WARDMAN P. Reduction potentials of one‐electron couples involving free radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1989, 18(4):1637-1755.
doi: 10.1063/1.555843 |
[33] |
SCHULTZ M M, HIGGINS C P, HUSET C A, et al. Fluorochemical mass flows in a municipal wastewater treatment facility[J]. Environmental Science & Technology, 2006, 40(23):7350-7357.
doi: 10.1021/es061025m |
[34] |
SINCLAIR E, KANNAN K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants[J]. Environmental Science & Technology, 2006, 40(5):1408-1414.
doi: 10.1021/es051798v |
[35] | SUNDSTROM D W, KLEI H E. Wastewater treatment[M]. Upper Saddle River,New Jersey:Prentice Hall,Inc. 1979. |
[36] |
THOMPSON J, EAGLESHAM G, REUNGOAT J, et al. Removal of PFOS,PFOA and other perfluoroalkyl acids at water reclamation plants in South East Queensland Australia[J]. Chemosphere, 2011, 82(1):9-17.
doi: 10.1016/j.chemosphere.2010.10.040 |
[37] |
CARTER K E, FARRELL J. Removal of perfluorooctane and perfluorobutane sulfonate from water via carbon adsorption and ion exchange[J]. Separation Science and Technology, 2010, 45(6):762-767.
doi: 10.1080/01496391003608421 |
[38] |
ESCHAUZIER C, BEERENDONK E, SCHOLTE-VEENENDAAL P, et al. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain[J]. Environmental Science & Technology, 2012, 46(3):1708-1715.
doi: 10.1021/es201662b |
[39] |
OCHOA-HERRERA V, SIERRA-ALVAREZ R. Removal of perfluorinated surfactants by sorption onto granular activated carbon,zeolite and sludge[J]. Chemosphere, 2008, 72(10):1588-1593.
doi: 10.1016/j.chemosphere.2008.04.029 |
[40] |
XIAO F, DAVIDSAVOR K J, PARK S, et al. Batch and column study:Sorption of perfluorinated surfactants from water and cosolvent systems by Amberlite XAD resins[J]. Journal of Colloid and Interface Science, 2012, 368(1):505-511.
doi: 10.1016/j.jcis.2011.11.011 |
[41] |
KWON B G, LIM H J, NA S H, et al. Biodegradation of perfluorooctanesulfonate(PFOS) as an emerging contaminant[J]. Chemosphere, 2014, 109:221-225.
doi: 10.1016/j.chemosphere.2014.01.072 |
[42] |
SCHAEFER C E, ANDAYA C, BURANT A, et al. Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate:Insights into mechanisms and application to groundwater treatment[J]. Chemical Engineering Journal, 2017, 317:424-432.
doi: 10.1016/j.cej.2017.02.107 |
[43] |
OCHIAI T, IIZUKA Y, NAKATA K, et al. Efficient electrochemical decomposition of perfluorocarboxylic acids by the use of a boron-doped diamond electrode[J]. Diamond and Related Materials, 2011, 20(2):64-67.
doi: 10.1016/j.diamond.2010.12.008 |
[44] |
CARTER K E, FARRELL J. Oxidative destruction of perfluorooctane sulfonate using boron-doped diamond film electrodes[J]. Environmental Science & Technology, 2008, 42(16):6111-6115.
doi: 10.1021/es703273s |
[45] |
URTIAGA A, FERNÁNDEZ-GONZÁLEZ C, GÓMEZ-LAVÍN S, et al. Kinetics of the electrochemical mineralization of perfluorooctanoic acid on ultrananocrystalline boron doped conductive diamond electrodes[J]. Chemosphere, 2015, 129(6):20-26.
doi: 10.1016/j.chemosphere.2014.05.090 |
[1] | YANG Bo, LI Chengyun, LYU Haoxuan, ZHOU Bowen, LI Guangdi, GU Peng. Power system transient stability assessment method based on multiple STA-GLN ensemble models [J]. Integrated Intelligent Energy, 2023, 45(7): 48-60. |
[2] | LIU Yuanyuan, GENG Zhi, ZHANG Yuanfeng, ZHANG Liang, HAN Zhao, ZHANG Bin. Analysis of heat transfer characteristics and thermal-permeability coupling characteristics of single U-tube borehole heat exchangers [J]. Integrated Intelligent Energy, 2023, 45(4): 81-88. |
[3] | QIAO Long, XIE Ligang, XIONG Chen, SONG Nanxin, PU Wenhao. Compressed supercritical carbon dioxide energy storage system coupled with heat pump and thermodynamic analysis [J]. Integrated Intelligent Energy, 2023, 45(12): 53-62. |
[4] | ZHENG Zhen, ZHU Feng, MA Xiaoli, TIAN Shuxin, JIANG Haozhe. Short-term new energy power prediction based on TL-LSTM [J]. Integrated Intelligent Energy, 2023, 45(1): 41-48. |
[5] | LUO Liqi, WANG Yue, ZHONG Haijun, LI Qingxun, XIE Guangyuan, WANG Shaorong. Design of the CHP system integrated with SOFC [J]. Integrated Intelligent Energy, 2022, 44(8): 25-32. |
[6] | DOU Peng, YU Qiang, FAN Zhansheng, ZHI Ruiping, LU Yuanwei, WU Yuting, YANG Guichun. Experimental study on phase-change discharging characteristics of modified barium hydroxide octahydrate [J]. Huadian Technology, 2021, 43(7): 47-53. |
[7] | YU Qiang, HE Cong, ZHI Ruiping, LU Yuanwei, WU Yuting, YANG Guichun. Research on natural convection heat transfer of molten salts on vertical cylinder surface during heat storage [J]. Huadian Technology, 2021, 43(7): 54-61. |
[8] | YANG Mingming. Wind speed correction for wind turbine based on convolutional neural network [J]. Huadian Technology, 2021, 43(5): 75-79. |
[9] | TAN Xuemei, LIU Shijie, ZHAO Bing, GONG Taiyi, WANG Jialin, HU Nan. Research on heat transfer of gas-solid two-phase flow in CFB boilers [J]. Huadian Technology, 2021, 43(10): 61-67. |
[10] | ZHAO Tiantian, WANG Luyuan, ZHANG Xingyu, SUN Rongfeng, XUAN Chengbo, GENG Wenguang, CHENG Xingxing, WANG Zhiqiang. Research progress of immersion phase-change cooling for data centers [J]. Huadian Technology, 2021, 43(10): 68-72. |
[11] | YANG Mingming. Research on wind turbine power curve based on Nacelle Transfer Function [J]. Huadian Technology, 2020, 42(5): 50-54. |
[12] | SUN Shugang,ZHU Yu,QIAN Bing,LI Xiaowu, NI Hongjun. Coating transfer process optimization based on GA [J]. Huadian Technology, 2020, 42(2): 72-75. |
[13] | ZHANG Mengze, LIU Zhi, ZHANG Liqiang, LI Yang, ZHOU Binxuan, MA Chunyuan, DONG Yong. Effect of activated coke diameter on SO2 adsorption in fixed-bed and entrained-flow reactors [J]. Huadian Technology, 2020, 42(10): 22-27. |
[14] |
SUN Hui,XU Xue,LIU Shujun,WEI Yufang,YIN Ruixiang,MAO Lianfei,HU Busong.
Thermal design and test verification of the evaporator for ORC power generating system
[J]. Huadian Technology, 2019, 41(4): 59-63.
|
[15] |
QIU Yonggang.
ACC design optimization for gas turbine combined cycle units
[J]. Huadian Technology, 2018, 40(5): 13-16.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||