Huadian Technology ›› 2021, Vol. 43 ›› Issue (11): 58-65.doi: 10.3969/j.issn.1674-1951.2021.11.007
• Key Technologies with Potential • Previous Articles Next Articles
WANG Yongzhen1(), HAN Kai1, ZHAO Jun2, WANG Jianxiao3,*(
), GONG Yulie4, FAN Yifan5
Received:
2021-08-30
Revised:
2021-09-28
Published:
2021-11-25
Contact:
WANG Jianxiao
E-mail:wyz80hou@bit.edu.cn;wangjx@ncepu.edu.cn
CLC Number:
WANG Yongzhen, HAN Kai, ZHAO Jun, WANG Jianxiao, GONG Yulie, FAN Yifan. Orientation and participation mode of geothermal power generation in the new power system[J]. Huadian Technology, 2021, 43(11): 58-65.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.11.007
Tab.1
Investment and operation cost of the system under different geothermal power proportion and dispatching mode 亿元
项目 | 地热发电机组替代火电机组的比例/% | |||
---|---|---|---|---|
0 | 10 | 20 | 40 | |
燃料成本 | 2 021.62 | 1 852.00 | 1 574.47 | 1 101.80 |
机组排放成本 | 297.21 | 272.61 | 231.59 | 162.49 |
非地热机组投资成本 | 293.00 | 261.74 | 230.49 | 168.00 |
地热投资成本 | 0 | 104.16 | 208.32 | 416.64 |
总系统生命周期成本 | 2 637.83 | 2 516.51 | 2 270.87 | 1 874.93 |
[1] | 王永真, 张靖, 潘崇超, 等. 综合智慧能源多维绩效评价指标研究综述[J]. 全球能源互联网, 2021, 4(3):207-225. |
WANG Yongzhen, ZHANG Jing, PAN Chongchao, et al. Multi-dimensional performance evaluation index review of integrated and intelligent energy[J]. Journal of Global Energy Interconnection, 2021, 4(3):207-225. | |
[2] | 甘中学, 郑超越, 许裕栗, 等. 三联供能源系统优化建模与调度方法[J]. 控制工程, 2020, 27(6):1103-1112. |
GAN Zhongxue, ZHENG Chaoyue, XU Yuli, et al. Energy optimization modeling and scheduling method for CCHP system[J]. Control Engineering of China, 2020, 27(6):1103-1112. | |
[3] | 李浩, 钟声远, 王永真, 等. 基于能量与信息耦合的分布式能源系统配置优化方法[J]. 中国电机工程学报, 2020, 40(17):5467-5476. |
LI Hao, ZHONG Shengyuan, WANG Yongzhen, et al. Optimization method on the distributed energy system based on energy and information coupled[J]. Proceedings of the CSEE, 2020, 40(17):5467-5476. | |
[4] | 马丽梅, 史丹, 裴庆冰. 中国能源低碳转型(2015—2050):可再生能源发展与可行路径[J]. 中国人口·资源与环境, 2018, 28(2):8-18. |
MA Limei, SHI Dan, PEI Qingbing. Low-carbon transformation of China's energy in 2015—2050:Renewable energy development and feasible path[J]. China Population, Resources and Environment, 2018, 28(2):8-18. | |
[5] | 何建坤. 中国能源革命与低碳发展的战略选择[J]. 武汉大学学报(哲学社会科学版), 2015, 68(1):5-12. |
HE Jiankun. The strategic choice of Chinese energy revolution and low carbon development[J]. Wuhan University Journal (Philosophy & Social Sciences), 2015, 68(1):5-12. | |
[6] |
HUANG A Q, CROW M L, HEYDT G T, et al. The future renewable electric energy delivery and management (FREEDM) system: The Energy Internet[J]. Proceedings of the IEEE, 2011, 99(1):133-148.
doi: 10.1109/JPROC.2010.2081330 |
[7] | 王永真, 张宁, 关永刚, 等. 当前能源互联网与智能电网研究选题的继承与拓展[J]. 电力系统自动化, 2020, 44(4):1-7. |
WANG Yongzhen, ZHANG Ning, GUAN Yonggang, et al. Inheritance and expansion analysis of research topics between Energy Internet and smart grid[J]. Automation of Electric Power Systems, 2020, 44(4):1-7. | |
[8] | 徐潇源, 王晗, 严正, 等. 能源转型背景下电力系统不确定性及应对方法综述[J]. 电力系统自动化, 2021, 45(16):1-13. |
XU Xiaoyuan, WANG Han, YAN Zheng, et al. Overview of power system uncertainty and its solutions under energy transition[J]. Automation of Electric Power Systems, 2021, 45(16):1-13. | |
[9] | 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9):171-191. |
ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9):171-191. | |
[10] | 肖晋宇, 侯金鸣, 杜尔顺, 等. 支撑电力系统清洁转型的储能需求量化分析模型与案例分析[J/OL]. 电力系统自动化, 2020:1-11[2021-07-28]. https://kns.cnki.net/kcms/detail/32.1180.TP.20200720.1309.002.html. |
XIAO Jinyu, HOU Jinming, DU Ershun, et al. Quantitative analysis model and case study of energy storage demand supporting clean transformation of electric power system[J/OL]. Automation of Electric Power Systems, 2020:1-11[2021-07-28]. https://kns.cnki.net/kcms/detail/32.1180.TP.20200720.1309.002.html. | |
[11] | 张文华, 闫庆友, 何钢, 等. 气候变化约束下中国电力系统低碳转型路径及策略[J]. 气候变化研究进展, 2021, 17(1):18-26. |
ZHANG Wenhua, YAN Qingyou, HE Gang, et al. The pathway and strategy of China's power system low-carbon transition under the constraints of climate change[J]. Climate Change Research, 2021, 17(1):18-26. | |
[12] | 朱炫灿, 葛天舒, 吴俊晔, 等. 吸附法碳捕集技术的规模化应用和挑战[J]. 科学通报, 2021(22):2861-2877. |
ZHU Xuancan, GE Tianshu, WU Junye, et al. Large-scale applications and challenges of adsorption-based carbon capture technologies[J]. Chinese Science Bulletin, 2021(22):2861-2877. | |
[13] |
WANG Yongzhen, LI Chengjun, ZHAO Jun, et al. The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches[J]. Renewable and Sustainable Energy Reviews, 2021, 138:110557.
doi: 10.1016/j.rser.2020.110557 |
[14] | 郑克棪, 郑帆. 中国地热发电产业前景探讨[J]. 中外能源, 2020, 25(11):17-23. |
ZHENG Keyan, ZHENG Fan. Discussion on prospects of geothermal power generation industry in China[J]. Sino-Global Energy, 2020, 25(11):17-23. | |
[15] | 王深, 吕连宏, 张保留, 等. 基于多目标模型的中国低成本碳达峰碳中和路径研究[J/OL]. 环境科学研究, 2021:1-15[2021-07-28]. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=202103190000004. |
WANG Shen, LYU Lianhong, ZHANG Baoliu, et al. Multi objective programming model of low-cost path for China's peaking carbon dioxide emissions and carbon neutrality[J/OL]. Research of Environmental Sciences,2021:1-15 [2021-07-28]. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=202103190000004. | |
[16] | 江亿, 胡姗. 中国建筑部门实现碳中和的路径[J]. 暖通空调, 2021, 51(5):1-13. |
JIANG Yi, HU Shan. Paths to carbon neutrality in China's building sector[J]. Heating Ventilating & Air Conditioning, 2021, 51(5):1-13. | |
[17] | IRENA. Renewable energy statistics 2020[EB/OL].(2020-07-01)[2021-07-28]. https://www.irena.org/publications/2020/Jul/Renewable-energy-statistics-2020. |
[18] | 王永真, 杨柳, 张超, 等. 中国地热发电发展现状与面临的挑战[J]. 国际石油经济, 2019, 27(1):95-100. |
WANG Yongzhen, YANG Liu, ZHANG Chao, et al. Status quo and challenges of geothermal power generation in China[J]. International Petroleum Economics, 2019, 27(1):95-100. | |
[19] | 王青宽. 风光储微电网配置和运行优化研究[D]. 北京:华北电力大学, 2019. |
[20] | 汪昌霜. 大规模新能源发电并网容量效益及消纳能力评估方法研究[D]. 武汉:华中科技大学, 2018. |
[21] | 陈典, 钟海旺, 夏清. 基于全成本电价的安全约束经济调度[J]. 中国电机工程学报, 2016, 36(5):1190-1199. |
CHEN Dian, ZHONG Haiwang, XIA Qing. Security constrained economic dispatch based on total cost price[J]. Proceedings of the CSEE, 2016, 36(5):1190-1199. | |
[22] | BEARDSMORE G, DAVIDSON C, PAYNE D, et al. Australia country update [C]// Proceedings World Geothermal Congress 2020. Reykjavik, 2020. |
[23] | 马冰, 贾凌霄, 于洋, 等. 世界地热能开发利用现状与展望[J/OL]. 中国地质, 2021:1-22 [2021-07-28]. http://kns.cnki.net/kcms/detail/11.1167.P.20210528.1040.004.html. |
MA Bing, JIA Lingxiao, YU Yang, et al. The development and utilization of geothermal energy in the world[J/OL]. Geology in China, 2021:1-22 [2021-07-28]. http://kns.cnki.net/kcms/detail/11.1167.P.20210528.1040.004.html. | |
[24] | 罗佐县, 刘芮, 宫昊, 等. 中国地热产业发展空间分析[J]. 国际石油经济, 2021, 29(4):40-47. |
LUO Zuoxian, LIU Rui, GONG Hao, et al. The development space of geothermal industry in China[J]. International Petroleum Economics, 2021, 29(4):40-47. | |
[25] | 何治亮, 李双建, 刘全有, 等. 盆地深部地质作用与深层资源——科学问题与攻关方向[J]. 石油实验地质, 2020, 42(5):767-779. |
HE Zhiliang, LI Shuangjian, LIU Quanyou, et al. Deep geological processes and deep resources in basins:Scientific issues and research directions[J]. Petroleum Geology & Experiment, 2020, 42(5):767-779. | |
[26] | 许天福, 汪禹, 封官宏. 深部超临界地热资源研究进展及开发前景展望[J]. 天然气工业, 2021, 41(3):155-167. |
XU Tianfu, WANG Yu, FENG Guanhong. Research progress and development prospect of deep supercritical geothermal resources[J]. Natural Gas Industry, 2021, 41(3):155-167. | |
[27] | 王永真, 朱轶林, 潘利生, 等. 基于知识图谱的有机朗肯循环研究概览[J]. 太阳能, 2020(2):18-32. |
WANG Yongzhen, ZHU Yilin, PAN Lisheng, et al. Overview of research on organic Rankine cycle based on knowledge graph domain[J]. Solar Energy, 2020(2):18-32. | |
[28] |
ZHAO Jun, HU Likai, WANG Yongzhen, et al. How to rapidly predict the performance of ORC: Optimal empirical correlation based on cycle separation[J]. Energy Conversion and Management, 2019, 188:86-93.
doi: 10.1016/j.enconman.2019.02.095 |
[29] | 张亮, 裴晶晶, 任韶然. 超临界CO2在干热岩中的采热能力及系统能量利用效率的研究[J]. 可再生能源, 2014, 32(1):114-119. |
ZHANG Liang, PEI Jingjing, REN Shaoran. Heat mining capacity and energy utilization efficiency of SCCO2-HDR geothermal system[J]. Renewable Energy Resources, 2014, 32(1):114-119. | |
[30] | 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31. |
[31] | 任福康, 陈宜, 王江江. 耦合太阳能和地热能的冷热电联供系统优化[J]. 工程热物理学报, 2021, 42(1):16-24. |
REN Fukang, CHEN Yi, WANG Jiangjiang . Optimization of combined cooling, heating, and power system coupled with solar and geothermal energies[J]. Journal of Engineering Thermophysics, 2021, 42(1):16-24. | |
[32] | 董师彤. 基于地热的新型冷热电三联供系统的研究[D]. 抚顺:辽宁石油化工大学, 2020. |
[33] | 安磊, 王绵斌, 齐霞, 等. “风、光、火、蓄、储”多能源互补优化调度方法研究[J]. 可再生能源, 2018, 36(10):1492-1498. |
AN Lei, WANG Mianbin, QI Xia, et al. Optimal dispatching of multi-power sources containing wind/photovoltaic/thermal/hydro-pumped and battery storage[J]. Renewable Energy Resources, 2018, 36(10):1492-1498. |
[1] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[2] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[3] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[4] | WANG Liang, DENG Song. Anomalous data detection methods for new power systems [J]. Integrated Intelligent Energy, 2024, 46(5): 12-19. |
[5] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[6] | WANG Yongli, WANG Yanan, MA Ziben, QIN Yumeng, CHEN Xichang, TENG Yue. Effectiveness evaluation on energy trading systems taking blockchain technology [J]. Integrated Intelligent Energy, 2024, 46(4): 78-84. |
[7] | DING Leyan, KE Song, YANG Jun, SHI Xingye. Control strategy of virtual synchronous generators based on adaptive control parameter setting [J]. Integrated Intelligent Energy, 2024, 46(3): 35-44. |
[8] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[9] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[10] | ZHANG Xinyi, YANG Bo. Stability analysis on islanded microgrids with grid-forming and grid-following converters [J]. Integrated Intelligent Energy, 2024, 46(2): 12-18. |
[11] | SUN Na, DONG Haiying, CHEN Wei, MA Hulin. Secondary frequency modulation control strategy for large-scale grid-side energy storage devices in new power systems [J]. Integrated Intelligent Energy, 2024, 46(2): 59-67. |
[12] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[13] | LIN Jiajun, YAN Weidan, HU Junhua, ZHENG Yiming, SHAO Xianjun, GUO Bingyan. Application and prospect of multimodal knowledge graph in electric power operation inspection [J]. Integrated Intelligent Energy, 2024, 46(1): 65-74. |
[14] | YU Haibin, DONG Ye, WENG Jinde, HU Xinchen, YAN Wei, WU Difan. Research on the application and economic benefits of 5G slice in the urban distribution network [J]. Integrated Intelligent Energy, 2024, 46(1): 75-83. |
[15] | HU Chao, PENG Wenhe, FANG Zhijian. Hierarchical optimization scheduling for electric vehicles with PV-power storage charging stations [J]. Integrated Intelligent Energy, 2023, 45(9): 11-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||