Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (11): 1-9.doi: 10.3969/j.issn.2097-0706.2024.11.001
• Optimized Operation and Control of Integrating Energy Systems • Next Articles
WANG Jin1,2(), ZHANG Xiaoyu1,2,*(
)
Received:
2024-05-09
Revised:
2024-08-07
Published:
2024-11-25
Contact:
ZHANG Xiaoyu
E-mail:wjin0408@163.com;zhangxiaoyu@ahu.edu.cn
Supported by:
CLC Number:
WANG Jin, ZHANG Xiaoyu. False data injection attacks detection model based on LightGBM for household load data[J]. Integrated Intelligent Energy, 2024, 46(11): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.11.001
Table 2
120 features extracted from weekly data
特征集 | 特征值 |
---|---|
统计特征 (60个) | 每周(工作日、周末)平均负荷 每周(工作日、周末)最大负荷 每周(工作日、周末)最小负荷 每周(工作日、周末)总负荷 每周(工作日、周末)基准(早、中、晚)平均电荷 每周(工作日、周末)基准(早、中、晚)最大电荷 每周(工作日、周末)基准(早、中、晚)最小电荷 每周(工作日、周末)基准(早、中、晚)总电荷 |
比率特征 (38个) | 负载因子(7 d) 每周(工作日、周末)基准(早、中、晚)负载因子 每周(工作日、周末)(最小负荷/平均负荷) 每周(工作日、周末)(平均负荷/最大负荷) 每周(早、中、晚)平均负荷/每周(工作日、周末)基准负荷 每周(工作日、周末)平均负荷/每周平均负荷 每周(工作日、周末)总负荷/每周总负荷 |
分布特征 (22个) | 第1个最大(最小)负荷出现的位置 最后一个最大(最小)负荷出现的位置 每周的方差 每周第25(50,75)百分位数 每周的偏度 每周的峰度 每周的熵 自相关函数(间隔1—6 d) |
Table 5
Comparison of FDIA detection performance on different models
攻击类型 | LSTM | CNN-TCN | SVM | LightGBM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rpre | Rrec | F1 | Rpre | Rrec | F1 | Rpre | Rrec | F1 | Rpre | Rrec | F1 | |
0 | 0.36 | 0.82 | 0.50 | 1.00 | 0.96 | 0.98 | 0.99 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 |
FDIA1 | 0.71 | 0.31 | 0.43 | 0.98 | 1.00 | 0.99 | 0.96 | 0.94 | 0.95 | 1.00 | 0.99 | 1.00 |
FDIA2 | 0.95 | 0.97 | 0.96 | 0.86 | 0.98 | 0.91 | 0.97 | 0.89 | 0.92 | 0.99 | 1.00 | 1.00 |
FDIA3 | 0.98 | 0.77 | 0.87 | 0.92 | 0.84 | 0.88 | 0.93 | 0.97 | 0.95 | 1.00 | 1.00 | 1.00 |
FDIA4 | 1.00 | 0.92 | 0.96 | 0.86 | 0.92 | 0.89 | 1.00 | 0.93 | 0.96 | 1.00 | 0.95 | 0.98 |
FDIA5 | 0.98 | 1.00 | 0.99 | 1.00 | 0.85 | 0.92 | 0.98 | 0.99 | 0.99 | 0.97 | 0.99 | 0.98 |
FDIA6 | 0.90 | 0.52 | 0.66 | 0.95 | 1.00 | 0.98 | 0.96 | 0.53 | 0.68 | 1.00 | 0.98 | 0.99 |
Table 6
Ablation test results of different features in the LightGBM model
攻击类型 | 统计特征 | 比率特征 | 分布特征 | 所有特征 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rpre | Rrec | F1 | Rpre | Rrec | F1 | Rpre | Rrec | F1 | Rpre | Rrec | F1 | |
0 | 0.96 | 1.00 | 0.98 | 0.96 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
FDIA1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.99 | 1.00 | 1.00 | 0.99 | 1.00 |
FDIA2 | 0.95 | 0.76 | 0.85 | 0.97 | 0.82 | 0.89 | 0.99 | 0.98 | 0.99 | 0.99 | 1.00 | 1.00 |
FDIA3 | 1.00 | 0.94 | 0.97 | 0.96 | 0.77 | 0.85 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
FDIA4 | 0.98 | 0.75 | 0.85 | 0.97 | 0.88 | 0.92 | 0.99 | 0.96 | 0.98 | 1.00 | 0.95 | 0.98 |
FDIA5 | 0.94 | 0.97 | 0.96 | 0.97 | 0.91 | 0.94 | 0.98 | 0.98 | 0.98 | 0.97 | 0.99 | 0.98 |
FDIA6 | 0.83 | 0.46 | 0.59 | 0.96 | 0.46 | 0.62 | 0.98 | 1.00 | 0.99 | 1.00 | 0.98 | 0.99 |
[1] | 张利生. 电力网电能损耗管理及降损技术[M]. 2版. 北京: 中国电力出版社, 2008. |
[2] | GAO Y Q, FOGGO B, YU N P. A physically inspired data-driven model for electricity theft detection with smart meter data[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5076-5088. |
[3] | RAMOS C C O, RODRIGUES D, DE SOUZA A N, et al. On the study of commercial losses in Brazil: A binary black hole algorithm for theft characterization[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 676-683. |
[4] | NAGI J, YAP K S, NAGI F, et al. NTL detection of electricity theft and abnormalities for large power consumers in TNB Malaysia[C]// Proceedings of 2010 IEEE Student Conference on Research and Development(SCOReD). IEEE, 2010: 202-206. |
[5] | LIU Y, NING P, REITER M K. False data injection attacks against state estimation in electric power grids[J]. ACM Transactions on Information and System Security, 2011, 14(1): 1-33. |
[6] | 陈震宇, 关志涛. 基于ARIMA模型的智能电网虚假数据注入攻击检测[J]. 电力信息与通信技术, 2021, 19(11): 24-29. |
CHEN Zhenyu, GUAN Zhitao. ARIMA model-based false data injection attack detection in smart grid[J]. Electric Power Information and Communication Technology, 2021, 19(11): 24-29. | |
[7] | 陈冰, 唐永旺. 基于Bi-GRU和自注意力的智能电网虚假数据注入攻击检测[J]. 计算机应用与软件, 2021, 38(7): 339-344, 349. |
CHEN Bing, TANG Yongwang. False data injection attacks detection in smart grid based on Bi-GRU and self-attention[J]. Computer Applications and Software, 2021, 38(7): 339-344, 349. | |
[8] | 黄冬梅, 王一帆, 胡安铎, 等. 融合无监督和有监督学习的虚假数据注入攻击检测[J]. 电力工程技术, 2024, 43(2): 134-141. |
HUANG Dongmei, WANG Yifan, HU Anduo, et al. Detection method of false data injection attack based on unsupervised and supervised learning[J]. Electric Power Engineering Technology, 2024, 43(2): 134-141. | |
[9] | 胡聪, 洪德华, 张翠翠, 等. 一种基于特征映射与深度学习的虚假数据注入检测方法[J]. 现代电力, 2023, 40(1): 125-132. |
HU Cong, HONG Dehua, ZHANG Cuicui, et al. A method to detect false data injection based on feature mapping and deep learning[J]. Modern Electric Power, 2023, 40(1): 125-132. | |
[10] | 陈冰, 唐永旺. 基于Transformer编码器的智能电网虚假数据注入攻击检测[J]. 计算机应用与软件, 2022, 39(7): 336-342. |
CHEN Bing, TANG Yongwang. False data injection attacks detecting based on transformer encoder in smart grid[J]. Computer Applications and Software, 2022, 39(7): 336-342. | |
[11] | 赵峰, 李妞妞. 基于VAE-GWO-LightGBM的信用卡欺诈检测方法[J]. 东北师大学报(自然科学版), 2023, 55(4): 77-84. |
ZHAO Feng, LI Niuniu. Credit card fraud detection method based on VAE-GWO-LightGBM[J]. Journal of Northeast Normal University(Natural Science Edition), 2023, 55(4): 77-84. | |
[12] | 王鑫, 廖彬, 李敏, 等. 融合LightGBM与SHAP的糖尿病预测及其特征分析方法[J]. 小型微型计算机系统, 2022, 43(9): 1877-1885. |
WANG Xin, LIAO Bin, LI Min, et al. Combination of LightGBM and SHAP for diabetes prediction and feature analysis[J]. Journal of Chinese Computer Systems, 2022, 43(9): 1877-1885. | |
[13] | 王懿泽, 孙吉利, 闫成杰, 等. 基于超像素与LightGBM的极化SAR图像地物分类[J]. 中国科学院大学学报, 2023, 40(5): 658-669. |
WANG Yize, SUN Jili, YAN Chengjie, et al. Polarimetric SAR image terrain classification based on superpixel and LightGBM[J]. Journal of University of Chinese Academy of Sciences, 2023, 40(5): 658-669. | |
[14] |
肖宏磊, 留毅, 夏红军, 等. 基于PCA与SSA-LightGBM的油浸式变压器故障诊断方法[J]. 综合智慧能源, 2023, 45(3): 9-16.
doi: 10.3969/j.issn.2097-0706.2023.03.002 |
XIAO Honglei, LIU Yi, XIA Hongjun, et al. Oil-immersed transformer fault diagnosis method based on PCA and SSA-LightGBM[J]. Integrated Intelligent Energy, 2023, 45(3): 9-16.
doi: 10.3969/j.issn.2097-0706.2023.03.002 |
|
[15] | 秦宇宸. 大数据技术在反窃电中的应用[J]. 光源与照明, 2022(7):195-197. |
QIN Yuchen. The application of big data technology in the field of anti-electricity stealing—Taking a line with high line loss rate as an example[J]. Lamps & Lighting, 2022(7):195-197. | |
[16] | 马晓杰, 程晓荣. 智能电网中的网络攻击检测机制的研究[J]. 网络安全技术与应用, 2020(6):28-30. |
MA Xiaojie, CHENG Xiaorong. Research on network attack detection mechanism in smart grid[J]. Network Security Technology and Application, 2020(6):28-30. | |
[17] |
李惠军, 陆建强, 周霞, 等. 面向智慧园区系统的网络攻击关联分析与防护策略研究[J]. 综合智慧能源, 2022, 44(7): 1-9.
doi: 10.3969/j.issn.2097-0706.2022.07.001 |
LI Huijun, LU Jianqiang, ZHOU Xia, et al. Network attack association analysis and attack protection strategy for smart park systems[J]. Integrated Intelligent Energy, 2022, 44(7): 1-9.
doi: 10.3969/j.issn.2097-0706.2022.07.001 |
|
[18] | 鲁杰, 杨超, 杜刃刃, 等. 电力CPS中的虚假数据注入攻击[J]. 智能计算机与应用, 2022, 12(6): 121-126. |
LU Jie, YANG Chao, DU Renren, et al. False data injection attack in power CPS[J]. Intelligent Computer and Applications, 2022, 12(6): 121-126. | |
[19] | ZANETTI M, JAMHOUR E, PELLENZ M, et al. A tunable fraud detection system for advanced metering infrastructure using short-lived patterns[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 830-840. |
[20] | ELAHE M F, JIN M, ZENG P. Knowledge-based systematic feature extraction for identifying households with plug-in electric vehicles[J]. IEEE Transactions on Smart Grid, 2022, 13(3): 2259-2268. |
[21] | WANG Y, BENNANI I L, LIU X F, et al. Electricity consumer characteristics identification: A federated learning approach[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3637-3647. |
[22] | 石洪波, 陈雨文, 陈鑫. SMOTE过采样及其改进算法研究综述[J]. 智能系统学报, 2019, 14(6): 1073-1083. |
SHI Hongbo, CHEN Yuwen, CHEN Xin. Summary of research on SMOTE oversampling and its improved algorithms[J]. CAAI Transactions on Intelligent Systems, 2019, 14(6): 1073-1083. | |
[23] |
汪李忠, 池建飞, 丁叶强, 等. 基于NNTR-SMOTE与GA-XGBoost的变压器故障诊断方法研究[J]. 综合智慧能源, 2024, 46(1): 84-93.
doi: 10.3969/j.issn.2097-0706.2024.01.010 |
WANG Lizhong, CHI Jianfei, DING Yeqiang, et al. Transformer fault diagnosis method based on NNTR-SMOTE and GA-XGBoost[J]. Integrated Intelligent Energy, 2024, 46(1): 84-93.
doi: 10.3969/j.issn.2097-0706.2024.01.010 |
|
[24] | KE G L, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]// International Conference on Neural Information Processing Systems. NeurIPS, 2017 : 3146-3154. |
[25] | 丁建立, 孙玥. 基于LightGBM的航班延误多分类预测[J]. 南京航空航天大学学报, 2021, 53(6): 847-854. |
DING Jianli, SUN Yue. Multi-classification prediction of flight delay based on LightGBM[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(6): 847-854. | |
[26] | 蒋其容, 魏勇, 高先松, 等. LSTM-LightGBM组合模型的短期电力负荷预测[J]. 中国设备工程, 2023(8): 78-81. |
JIANG Qirong, WEI Yong, GAO Xiansong, et al. Short-term power load forecasting based on LSTM-LightGBM combined model[J]. China Plant Engineering, 2023(8): 78-81. | |
[27] | SCHOFIELD J R, TINDEMANS S, CARMICHAEL R, et al. Low Carbon London project: Data from the dynamic time-of-use electricity pricing trial,2013[EB/OL].(2015-11-01)[2024-05-01].http://doi.org/10.5255/ UKDA-SN-7857-1. |
[1] | WANG Yawen, ZONG Shaoliang, CHENG Zhiyuan, LU Wanpeng. Reliability evaluation on SCR denitrification systems in thermal power plants based on FTA [J]. Integrated Intelligent Energy, 2024, 46(8): 77-85. |
[2] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[3] | LYU Yongsheng, ZHANG Xiaoyu, WANG Xirong, GUO Peiqian. Application and prospect of federated learning in new power systems [J]. Integrated Intelligent Energy, 2024, 46(11): 54-64. |
[4] | XIAO Honglei, LIU Yi, XIA Hongjun, MIAO Yufeng, YU Xiaoling, YANG Haiqi. Oil-immersed transformer fault diagnosis method based on PCA and SSA-LightGBM [J]. Integrated Intelligent Energy, 2023, 45(3): 9-16. |
[5] | ZHANG Xu, ZHANG Haohao, GU Jihao. Study on difference analysis and sampling inference methods of room temperature spatial characteristics [J]. Integrated Intelligent Energy, 2022, 44(9): 51-58. |
[6] | ZUO Wendong, LI Biao, GUO Baogang, GAO Xiaoyu, GU Jihao, WANG Weihe, DONG Zhipeng. Application of the secondary network intelligent balance system based on big data analysis [J]. Integrated Intelligent Energy, 2022, 44(3): 44-49. |
[7] | TAN Zhiling, CHEN Caiming, XU Shengchao, WU Zhihong, SONG Yin, WANG Pengfei. Research on service life prediction on rolling bearings based on vibration signal analysis [J]. Huadian Technology, 2021, 43(5): 36-44. |
[8] | JIN Xin, TIAN Xiuxia. Smart meter authentication scheme based on PUF and MtE [J]. Huadian Technology, 2021, 43(2): 22-27. |
[9] |
ZHANG Hang1,2,WANG Zhenyue2,CHEN Xing2.
Fault prediction system for low voltage power grid based on smart meters
[J]. Huadian Technology, 2019, 41(2): 14-17.
|
[10] |
HAO Zheng,HU Xiaofu,WANG Yun,WANG Yang,SHEN Xianming,LI Wei,WANG Hua.
Research on precise ammonia injection retrofit for SCR denitration systems in thermal powers |
[11] |
XIAO Xiangwu, WEN Wen, BAI Quansheng, HU Weidong, LI Zhijin, LIU Keqing.
Optimization of energy consumption forecast model based on big data platform and parallel random forest
[J]. Huadian Technology, 2018, 40(7): 1-4.
|
[12] |
TIAN Tian.
Implementation of status monitoring system based on realtime database
[J]. Huadian Technology, 2018, 40(6): 47-48.
|
[13] | WANG Yi1, LI Peng2, ZENG Qi2, ZHANG Dade2, YU Liyang2. Influence of oxygen content variation on east Junggar coal combustion [J]. Huadian Technology, 2014, 36(12): 46-48. |
[14] | LI Peng,ZENG Qi,ZHANG Dade. Experiment and research of combustion of east Junggar coal in large percentage [J]. Huadian Technology, 2014, 36(10): 15-18. |
[15] | DAI Jingyi;LI Jianyun. Experiment on lownitrogen combustion of boiler in 300MW unit [J]. Huadian Technology, 2010, 32(S1): 68-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||