Huadian Technology ›› 2021, Vol. 43 ›› Issue (5): 36-44.doi: 10.3969/j.issn.1674-1951.2021.05.006
• Intelligent Power • Previous Articles Next Articles
TAN Zhiling1(), CHEN Caiming1(
), XU Shengchao1(
), WU Zhihong2(
), SONG Yin2(
), WANG Pengfei3(
)
Received:
2021-01-20
Revised:
2021-04-10
Published:
2021-05-25
CLC Number:
TAN Zhiling, CHEN Caiming, XU Shengchao, WU Zhihong, SONG Yin, WANG Pengfei. Research on service life prediction on rolling bearings based on vibration signal analysis[J]. Huadian Technology, 2021, 43(5): 36-44.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.05.006
[1] | 沈长青. 旋转机械设备关键部件故障诊断与预测方法研究[D]. 合肥:中国科学技术大学, 2014. |
[2] | 张小丽, 陈雪峰, 李兵, 等. 机械重大装备寿命预测综述[J]. 机械工程学报, 2011,47(11):100-116. |
ZHANG Xiaoli, CHEN Xuefeng, LI Bing, et al. Review of life prediction for mechanical major equipments[J]. Journal of Mechanical Engineering, 2011,47(11):100-116. | |
[3] |
PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963,85(4):528-534.
doi: 10.1115/1.3656900 |
[4] |
ANDREIKIV O E, LESIV R M, LEVYTS'KA N M. Crack growth in structural materials under the combined action of fatigue and creep (review)[J]. Materials Science, 2009,45(1):1-17.
doi: 10.1007/s11003-009-9160-0 |
[5] |
MAKKONEN M. Predicting the total fatigue life in metals[J]. International Journal of Fatigue, 2009,31(7):1163-1175.
doi: 10.1016/j.ijfatigue.2008.12.008 |
[6] |
TALLIAN T. Weibull distribution of rolling contact fatigue life and deviations therefrom[J]. ASLE Trans, 1962,5(5):183-196.
doi: 10.1080/05698196208972465 |
[7] |
ZHAO Y X, LIANG H. Modeling of the probabilistic fatigue S-N curves using the two parameter Weibull distribution[J]. Journal of Mechanical Engineering, 2015,51(20):208-212.
doi: 10.3901/JME.2015.20.208 |
[8] | 唐云冰, 高德平, 罗贵火. 航空发动机高速滚珠轴承力学特性分析与研究[J]. 航空动力学报, 2006(2):354-360. |
TANG Yunbing, GAO Deping, LUO Guihuo. Research of aero-engine high-speed ball bearing[J]. Journal of Aerospace Power, 2006(2):354-360. | |
[9] | LU C, CHEN J, HONG R, et al. Degradation trend estimation of slewing bearing based on LSSVM model[J]. Mechanical Systems & Signal Processing, 2016, 76-77:353-366. |
[10] |
CHOI S, PAZOUKI E, BAEK J, et al. Iterative condition monitoring and fault diagnosis scheme of electric motor for harsh industrial application[J]. IEEE Transactions on Industrial Electronics, 2015,62(3):1760-1769.
doi: 10.1109/TIE.2014.2361112 |
[11] | 邱晓梅, 隋文涛, 王峰, 等. 基于相关系数和BP神经网络的轴承剩余寿命预测[J]. 组合机床与自动化加工技术, 2019(4):63-65. |
QIU Xiaomei, SUI Wentao, WANG Feng, et al. Remaining life prediction of bearing based on correlation coefficient and BP neural network[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019(4):63-65. | |
[12] | 张永建, 孙燕芳, 邢龙超. 基于小波包分解的滚动轴承故障诊断方法的研究[J]. 煤矿机械, 2014,35(5):256-258. |
ZHANG Yongjian, SUN Yanfang, XING Longchao. Research of rolling bearing fault diagnosis based on wavelet-packet decomposition method[J]. Coal Mine Machinery, 2014,35(5):256-258. | |
[13] | 何勇, 张祥金, 姚宗辰. 改进样本熵最优小波包阈值选择算法在信号降噪中的应用[J]. 兵器装备工程学报, 2019,40(3):149-154. |
HE Yong, ZHANG Xiangjin, YAO Zongchen. Improved optimal threshold selection algorithm applied to denoising[J]. Journal of Ordnance Equipment Engineering, 2019,40(3):149-154. | |
[14] | 车远宏, 贾雍, 汤卓, 等. 皮尔逊相关系数在风电功率组合预测中的应用[J]. 广西电力, 2016,39(3):50-53. |
CHE Yuanhong, JIA Yong, TANG Zhuo, et al. Application of pearson correlation coefficient in wind power combination prediction[J]. Guangxi Electric Power, 2016,39(3):50-53. | |
[15] | 张成龙, 郑凯, 刘杰. 基于小波包能量谱和改进FOA-GRNN的轴承寿命预测[J]. 组合机床与自动化加工技术, 2020(7):73-76,80. |
ZHANG Chenlong, ZHENG Kai, LIU Jie. Prediction method of bearing remaining useful life based on wavelet packet energy spectrum and improved FOA-GRNN[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(7):73-76,80. | |
[16] | 金亚军, 张丹, 隋文涛, 等. 基于粒子群优化神经网络的滚动轴承剩余寿命预测[J]. 组合机床与自动化加工技术, 2020(8):64-66,70. |
JIN Yajun, ZHANG Dan, SUI Wentao, et al. Prediction of rolling bearing residual life based on particle swarm optimization and neural network[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(8):64-66,70. |
[1] | SUN Jian, ZHANG Yunfan, CAI Xiaolong, LIU Dingqun. Optimal scheduling of HVAC systems based on predicted loads [J]. Integrated Intelligent Energy, 2024, 46(3): 12-19. |
[2] | LI Huijun, LU Jianqiang, ZHOU Xia, XIE Xiangpeng, WAN Lei. Network attack association analysis and attack protection strategy for smart park systems [J]. Integrated Intelligent Energy, 2022, 44(7): 1-9. |
[3] | WANG Xin, CHEN Zucui, BIAN Zaiping, WANG Yeyao, WU Yumiao. Optimal allocation of a wind‒PV‒battery hybrid system in smart microgrid based on particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2022, 44(6): 52-58. |
[4] | LIAO Minle, HUANG Chongyang, DAI Chengcheng, LI Hualin, FAN Gaosong. Analysis method of electric energy substitution potential based on time series and BP neural network [J]. Integrated Intelligent Energy, 2022, 44(3): 38-43. |
[5] | YAN Xinchun, CAO Huan, HUA Yunpeng. Prediction on tube wall temperatures of boiler heating surfaces based on artificial intelligence [J]. Integrated Intelligent Energy, 2022, 44(3): 58-62. |
[6] | ZHANG Aiping, ZHAO Lixing, LIU Jing. Research on optimized operation of building-type integrated energy service systems [J]. Integrated Intelligent Energy, 2022, 44(2): 42-48. |
[7] | CHEN De, MENG Anbo, CAI Yongfeng. Intelligent evaluation of cable harmonic loss based on CSO-BP neural network [J]. Huadian Technology, 2021, 43(8): 41-47. |
[8] | LI Yongqi, LEI Qikai, WANG Hao, HUA Sicong. State of health estimation for echelon-used batteries based on BP neural network [J]. Huadian Technology, 2021, 43(7): 42-46. |
[9] | CAO Xiguo, ZHANG Yongtao, LI Yatian. Prediction method for NOx discharged from SCR denitrification systems based on IQGA-GRNN model [J]. Huadian Technology, 2021, 43(5): 9-14. |
[10] | HU Qian, SUN Zhida, JIANG Keteng, LEI Yi, LI Haibo. Deviation assessment and control method for electricity sales companies based on short-term load bundling forecast [J]. Huadian Technology, 2021, 43(4): 47-55. |
[11] | SU Yu, ZHOU Chuan, WANG Qianggang. Closed-loop management on line loss indicators in a transformer area based on IoT [J]. Huadian Technology, 2021, 43(1): 19-23. |
[12] | JIANG Yin,REN Hongwei,CHEN Kai,ZHU Changjiang. Self-detecting method for faults in wind turbine controller I/O hardware based on BP neural network algorithm [J]. Huadian Technology, 2020, 42(5): 55-60. |
[13] | SUN Shugang,ZHU Yu,QIAN Bing,LI Xiaowu, NI Hongjun. Coating transfer process optimization based on GA [J]. Huadian Technology, 2020, 42(2): 72-75. |
[14] | HAN Yi, ZHANG Qiyue, WANG Yankai, YU Yingli, FU Xuchen, RONG Jun, DUAN Lunbo. Performance prediction on a 300 MW CFB based on BP neural network [J]. Huadian Technology, 2020, 42(12): 1-6. |
[15] | HUANG Shaowei. Application of ACMD in fault diagnosis for bearings [J]. Huadian Technology, 2020, 42(1): 54-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||