Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (3): 58-62.doi: 10.3969/j.issn.2097-0706.2022.03.009
• Intelligent Power • Previous Articles Next Articles
YAN Xinchun1(), CAO Huan1(
), HUA Yunpeng2,*(
)
Received:
2021-09-02
Revised:
2021-09-13
Published:
2022-03-25
Contact:
HUA Yunpeng
E-mail:171457409@qq.com;caohuanemail@163.com;2909108339@qq.com
CLC Number:
YAN Xinchun, CAO Huan, HUA Yunpeng. Prediction on tube wall temperatures of boiler heating surfaces based on artificial intelligence[J]. Integrated Intelligent Energy, 2022, 44(3): 58-62.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.03.009
Table 1
Analysis on the correlation degree with tube wall temperature at the heater outlet
参数 | 关联度 |
---|---|
主蒸汽温度 | 0.902 |
主蒸汽流量 | 0.814 |
主蒸汽压力 | 0.790 |
省煤器入口流量 | 0.892 |
省煤器入口温度 | 0.738 |
发电机有功功率 | 0.792 |
入炉总煤量 | 0.755 |
入炉总风量 | 0.705 |
一级减温器入口蒸汽温度 | 0.772 |
二级减温器入口蒸汽温度 | 0.790 |
一级减温器后蒸汽温度 | 0.605 |
二级减温器后蒸汽温度 | 0.625 |
一级减温水流量 | 0.621 |
一级减温水温度 | 0.582 |
二级减温水流量 | 0.669 |
二级减温水温度 | 0.682 |
风煤比 | 0.455 |
风水比 | 0.565 |
水煤比 | 0.505 |
Table 2
Neural network training samples after clustering
项目 | 时间(2020年) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
06-24 T 02:25—05:59 | 06-28 T 01:38—05:06 | 06-29 T 23:17—23:43 | 07-02 T 02:16—06:48 | 07-12 T 02:01—08:01 | … | 07-15 T 20:11—20:19 | 07-17 T 09:05—09:23 | 07-17 T 23: 37—18 T 00:03 | |||
输入变量 | 有功功率 | 175.0 | 174.1 | 172.2 | 178.2 | 177.1 | … | 309.2 | 309.1 | 176.0 | |
主蒸汽流量 | 525.4 | 524.7 | 510.1 | 535.3 | 532.3 | … | 960.0 | 948.4 | 519.8 | ||
主蒸汽压力 | 14.1 | 14.1 | 14.2 | 14.3 | 14.2 | … | 24.1 | 24.3 | 14.3 | ||
主蒸汽温度 | 562.3 | 563.4 | 561.8 | 563.3 | 561.3 | … | 561.2 | 560.3 | 564.6 | ||
给水流量 | 494.3 | 485.7 | 479.2 | 495.2 | 520.1 | … | 974.9 | 944.1 | 491.1 | ||
给水温度 | 281.0 | 280.2 | 282.1 | 283.5 | 277.2 | … | 305.4 | 308.9 | 281.3 | ||
左侧一级喷水 | 减温前温度 | 426.6 | 437.7 | 462.7 | 431.6 | 418.0 | … | 436.0 | 448.3 | 438.5 | |
减温后温度 | 412.1 | 407.7 | 425.9 | 411.4 | 412.7 | … | 433.8 | 443.8 | 418.7 | ||
右侧一级喷水 | 减温前温度 | 452.3 | 448.8 | 426.0 | 448.5 | 431.3 | … | 445.9 | 445.0 | 433.9 | |
减温后温度 | 419.0 | 418.1 | 415.2 | 418.5 | 419.6 | … | 434.5 | 435.3 | 415.1 | ||
左侧二级喷水 | 减温前温度 | 482.7 | 483.7 | 495.2 | 483.9 | 478.0 | … | 474.7 | 491.0 | 489.3 | |
减温后温度 | 457.0 | 449.9 | 453.7 | 451.3 | 459.7 | … | 463.8 | 472.8 | 462.9 | ||
右侧二级喷水 | 减温前温度 | 495.3 | 493.6 | 484.0 | 493.7 | 481.1 | … | 483.2 | 482.2 | 481.5 | |
减温后温度 | 458.7 | 449.8 | 460.3 | 452.0 | 459.7 | … | 477.6 | 475.6 | 450.5 | ||
输出变量 | 末级过热器1307壁温 | 580.1 | 579.2 | 572.1 | 583.2 | 574.0 | … | 568.7 | 572.6 | 579.7 | |
末级过热器3507壁温 | 573.6 | 576.4 | 581.0 | 572.9 | 575.9 | … | 570.3 | 567.5 | 572.7 |
[1] | 饶庆平. 超临界锅炉超温爆管的防范[J]. 电力与电工, 2010(4):12-15. |
[2] | 黄兴德, 周新雅, 游喆, 等. 超(超)临界锅炉高温受热面蒸汽氧化皮的生长与剥落特性[J]. 动力工程, 2009, 29(6):602-608. |
HUANG Xingde, ZHOU Xinya, YOU Zhe, et al. Oxide scale growth and exfoliation behavior on high temperature heat-absorbing surface exposed to steam for supercritical (ultrasupercritical) boilers[J]. Journal of Power Engineering, 2009, 29(6):602-608. | |
[3] | 穆岱. 蒸汽侧氧化膜对电站锅炉管道壁温及测温误差的影响[D]. 北京: 华北电力大学, 2014: 1-8. |
[4] | 伍健伟, 吕杰, 金光亮, 等. 1 000 MW机组锅炉受热面超温原因分析及对策[J]. 东北电力技术, 2012, 33(9):18-20. |
WU Jianwei, LYU Jie, JIN Guangliang, et al. Analysis and countermeasures on over-heating issues of boiler heating surface in 1 000 MW ultra supercritical unit[J]. Northeast Electric Power Technology, 2012, 33(9):18-20. | |
[5] | 王学礼. 1 000 MW超超临界锅炉过热器爆管原因分析及防范措施[J]. 华电技术, 2019, 41(7):70-72. |
WANG Xueli. Reasons analysis for tube blasting and preventive measures for superheater of 1 000 MW supercritical boiler[J]. Huadian Technology, 2019, 41(7):70-72. | |
[6] | 温志强, 朱宪然, 任金磊. 600 MW亚临界机组锅炉内高温受热面壁温实测研究[J]. 电站系统工程, 2013, 29(4):26-28. |
WEN Zhiqiang, ZHU Xianran, REN Jinlei. Measurement study for wall temperature of high temperature surfaces in a 600 MW subcritical boiler[J]. Power System Engineering, 2013, 29(4):26-28. | |
[7] | 初云涛, 周怀春, 梁倩. 两类过热器壁温分布特性的仿真研究[J]. 动力工程, 2008, 28(1):40-44, 83. |
CHU Yuntao, ZHOU Huaichun, LIANG Qian. Simulation research on the wall temperature distribution characteristics of two types of superheater[J]. Journal of Power Engineering, 2008, 28(1):40-44, 83. | |
[8] | 郭涛. 大型电站锅炉高温受热面热偏差分析研究[D]. 北京: 华北电力大学, 2014: 6-8. |
[9] | 杨润红. 大容量燃煤电站锅炉热力计算分析研究[D]. 北京: 北京交通大学, 2007: 4-5. |
[10] |
TROJAN M, TALER D. Thermal simulation of superheaters taking into account the processes occurring on the side of the steam and flue gas[J]. Fuel, 2015, 150:75-87.
doi: 10.1016/j.fuel.2015.01.095 |
[11] |
DHANUSKODIA R, KALIAPPANA R, SURESHA S, et al. Artificial Neural Networks model for predicting wall temperature of supercritical boilers[J]. Applied Thermal Engineering, 2015, 90:749-753.
doi: 10.1016/j.applthermaleng.2015.07.036 |
[12] | 金秀章, 魏琳, 王真. 基于最小二乘支持向量机的锅炉炉膛温度在线预测[J]. 热力发电, 2016, 45(7):93-97. |
[13] |
CHANG W, CHU X, FATIMA BSFA, et al. Heat transfer prediction of supercritical water with Artificial Neural Networks[J]. Applied Thermal Engineering, 2018, 131:815-824.
doi: 10.1016/j.applthermaleng.2017.12.063 |
[14] |
NARASIMHAN S, MAH R S H, TAMHANE A C, et al. A composite statistical test for detecting changes of steady states[J]. AIChE Journal, 1986, 32(9):1409-1418.
doi: 10.1002/(ISSN)1547-5905 |
[15] | 韩驰. 超(超)临界火电机组炉膛受热面金属壁温预测及监测系统[D]. 吉林: 东北电力大学, 2020. |
[16] | 何彪. 基于历史数据的电站锅炉故障检测及动态建模[D]. 武汉: 华中科技大学, 2018. |
[17] | 韩旭东. 基于数据驱动的火电机组高压加热系统异常检测研究[J]. 华电技术, 2021, 43(8):67-73. |
HAN Xudong. Data-driven based research on anomaly detection for high-pressure heaters in thermal power units[J]. Huadian Technology, 2021, 43(8):67-73. | |
[18] | 刘吉臻, 高萌, 吕游, 等. 过程运行数据的稳态检测方法综述[J]. 仪器仪表学报, 2013, 34(8):1739-1748. |
LIU Jizhen, GAO Meng, LYU You, et al. Overview on the steady-state detection methods of process operating data[J]. Chinese Journal of Scientific Instrument, 2013, 34(8):1739-1748. | |
[19] | 张尚志, 谭鹏, 何彪, 等. 基于滑动判别算法的低NOx燃烧优化分析[J]. 热力发电, 2016, 45(5):33-40. |
ZHANG Shangzhi, TAN Peng, HE Biao, et al. Combustion optimization for low NOx-emission based on slippage distinguishing algorithm[J]. Thermal Power Generation, 2016, 45(5):33-40. | |
[20] | 崔博洋, 王永林, 王云, 等. 基于长短期记忆神经网络的吸收塔pH值预测模型[J]. 华电技术, 2020, 42(9):32-36. |
CUI Boyang, WANG Yonglin, WANG Yun, et al. Prediction model for the pH value of absorption tower slurry based on LSTM neural networks[J]. Huadian Technology, 2020, 42(9):32-36. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | TONG Jialin, ZHANG Yan, LIU Wensheng, MAO Jianbo, YE Xuemin. Numerical simulation on co-combustion and alkali metal distribution in an opposed firing boiler mixed with sludge [J]. Integrated Intelligent Energy, 2024, 46(8): 50-58. |
[3] | WANG Zhe, CHENG Gang, XING Zuoxia, FU Qitong, FU Changtao. Modeling and control optimization of photovoltaic-thermal heating system based on MPC [J]. Integrated Intelligent Energy, 2024, 46(7): 21-28. |
[4] | DOU Zhenlan, LI Jiawen, ZHANG Chunyan, CAI Zhenqi, YUAN Benfeng, JIA Kunqi, XIAO Guoping, WANG Jianqiang. Spatiotemporal distributed parameter modeling of solid oxide electrolysis cells [J]. Integrated Intelligent Energy, 2024, 46(7): 53-62. |
[5] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[6] | ZHU Weiwei, ZHU Qing, GAO Wensen, LIU Caihua, WANG Luze, LIU Zengji. Switching method for distribution network feeder automation system based on 5G communication delay [J]. Integrated Intelligent Energy, 2024, 46(5): 1-11. |
[7] | XING Huidi, GONG Gangjun, ZHAI Mingyue, LIU Xuesong, WANG Haomiao, YANG Shuang. Research on security and privacy protection of electric power data sharing [J]. Integrated Intelligent Energy, 2024, 46(5): 30-40. |
[8] | LI Yinuo, LIU Wei, WEI Xingshen, WANG Qi. Research on vulnerability of distribution networks with distributed photovoltaic under cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 50-57. |
[9] | LIU Xu, LU Jun, GONG Gangjun, HOU Zanyu, ZHANG Chunmeng, LIU Bo. Security protection for photovoltaic data acquisition and storage [J]. Integrated Intelligent Energy, 2024, 46(5): 73-80. |
[10] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[11] | TANG Zihan, WANG Shuaijie, JU Zhenhe, LEI Zhiqi. Performance optimization of photovoltaic/thermal systems coupled with air source heat pumps [J]. Integrated Intelligent Energy, 2024, 46(4): 34-41. |
[12] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[13] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[14] | WANG Yongli, WANG Yanan, MA Ziben, QIN Yumeng, CHEN Xichang, TENG Yue. Effectiveness evaluation on energy trading systems taking blockchain technology [J]. Integrated Intelligent Energy, 2024, 46(4): 78-84. |
[15] | LI Chunhua, ZHU Biao. Analysis on solar energy resources distribution of four provinces in northwestern China and long-term variation [J]. Integrated Intelligent Energy, 2024, 46(2): 75-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||