Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (8): 36-40.doi: 10.3969/j.issn.2097-0706.2024.08.005
• Low-Carbon Technical Economy • Previous Articles Next Articles
ZOU Fenghua(), ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan
Received:
2022-09-15
Revised:
2022-12-30
Published:
2024-08-25
CLC Number:
ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target[J]. Integrated Intelligent Energy, 2024, 46(8): 36-40.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.08.005
[1] | 国家发展和改革委员会发展战略和规划司. 国家及各地区国民经济和社会发展第十四个五年规划和2035年远景目标纲要[M]. 北京: 人民出版社, 2022. |
[2] | 国务院. 关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL].(2021-10-24)[2022-08-26]. http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm. |
[3] | 中共中央办公厅, 国务院办公厅. 关于推动城乡建设绿色发展的意见[EB/OL].(2021-10-21)[2022-08-26]. http://www.gov.cn/zhengce/2021-10/21/content_5644083.htm. |
[4] | 住房和城乡建设部. “十四五”建筑节能与绿色建筑发展规划[EB/OL].(2021-03-01)[2022-08-26]. http://www.gov.cn/zhengce/zhengceku/2022-03/12/content_5678698.htm. |
[5] | 中国建筑节能协会能耗统计专委会. 中国建筑能耗与碳排放研究报告(2021)[EB/OL].(2021-12-28)[2022-08-26]. https://mp.weixin.qq.com/s/tnzXNdft6Tk2Ca3QYtJT1Q. |
[6] | 刘秦见, 王军, 高原, 等. 可再生能源在被动式超低能耗建筑中的应用分析[J]. 建筑科学, 2016, 32(4):25-29. |
LIU Qinjian, WANG Jun, GAO Yuan, et al. Application of renewable energy in passive ultra low-energy consumption building[J]. Building Science, 2016, 32(4):25-29. | |
[7] | 住房和城乡建设部. 公共建筑节能设计标准[EB/OL].(2015-02-03)[2022-08-26]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201502/20150203_224011.html. |
[8] | 龙惟定. 碳中和城市建筑能源系统(1):能源篇[J]. 暖通空调, 2022, 52(3):2-17. |
LONG Weiding. Building energy system of carbon neutrality cities(1):Energy[J]. Heating Ventilating & Air Conditioning, 2022, 52(3):2-17. | |
[9] | 张雪纯, 高广玲, 张智晟, 等. 基于需求响应的建筑楼宇综合能源系统优化调度[J]. 电力需求侧管理, 2019, 21(4):28-34. |
ZHANG Xuechun, GAO Guanglin, ZHANG Zhisheng, et al. Optimal scheduling of building integrated energy system based on demand response[J]. Power Demand Side Management, 2019, 21(4):28-34. | |
[10] | 李祥立, 任志勇, 端木琳. 建筑供热供冷系统生命周期能耗和碳排放案例分析[J]. 建筑科学, 2015, 31(2):97-102. |
LI Xiangli, REN Zhiyong, DUANMU Lin. Case study on life-cycle energy consumption and carbon emissions of building heating and cooling systems[J]. Building Science, 2015, 31(2):97-102. | |
[11] | 陈淑琴, 沈恒根, 李念平, 等. 住宅建筑能量信息系统综合评价模型研究[C]//.全国暖通空调制冷2010年学术年会论文集,2010:310. |
[12] | 刘晓华, 张涛, 刘效辰, 等. 面向双碳目标的建筑能源系统再认识[J]. 力学学报, 2023, 55(3):699-709. |
LIU Xiaohua, ZHANG Tao, LIU Xiaochen, et al. Rethinking of the building energy system towards the carbon neutral target[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3):699-709. | |
[13] |
路绍琰, 吴丹, 马来波, 等. 中国太阳能利用技术发展概况及趋势[J]. 科技导报, 2021, 39(19):66-73.
doi: 10.3981/j.issn.1000-7857.2021.19.008 |
LU Shaoyan, WU Dan, MA Laibo, et al. Development and trend of solar energy utilization technology in China[J]. Science & Technology Review, 2021, 39(19):66-73. | |
[14] | SHUKLA A K, SUDHAKAR K, BAREDAR P. Recent advancement in BIPV product technologies:A review[J]. Energy and Buildings, 2017,140:188-195. |
[15] | 靳伟. 光伏建筑一体化(BIPV)在绿色建筑中的应用[J]. 建筑技术, 2011, 42(10):907-910. |
JIN Wei. Application of building integrated photovoltaic (BIPV) in green buildings[J]. Architecture Technology, 2011, 42(10):907-910. | |
[16] | 刘昱, 李慧星, 冯国会. 超低能耗建筑中土壤源热泵系统的应用分析[J]. 太阳能学报, 2018, 39(10):2691-2698. |
LIU Yu, LI Huixing, FENG Guohui. Application of ground source heat pump system in ultra low energy consumption building[J]. Acta Energiae Solaris Sinica, 2018, 39(10):2691-2698. | |
[17] | 高文龙, 官燕玲. 土壤源热泵复合系统太阳能集热器面积的选择方法[J]. 太阳能学报, 2019, 40(7):1850-1858. |
GAO Wenlong, GUAN Yanling. Selection method of solar collector area for ground source heat pump composite system[J]. Acta Energiae Solaris Sinica, 2019 40(7):1850-1858. | |
[18] | 张立成. 《建筑给水排水设计标准》中空气源热泵热水系统设计探讨[J]. 中国给水排水, 2020, 36(16):60-63. |
ZHANG Licheng. Discussion on design method of air source heat pump hot water system in the standard for design of building water supply and drainage[J]. China Water & Wastewater, 2020, 36(16):60-63. | |
[19] |
徐恒志, 周博文, 李广地, 等. 含水源热泵的区域综合能源系统低碳运行优化研究[J]. 综合智慧能源, 2022, 44(1):39-48.
doi: 10.3969/j.issn.2097-0706.2022.01.006 |
XU Hengzhi, ZHOU Bowen, LI Guangdi, et al. Research on optimal operation of the regional integrated energy system with water-source heat pumps[J]. Integrated Intelligent Energy, 2022, 44(1):39-48.
doi: 10.3969/j.issn.2097-0706.2022.01.006 |
|
[20] | 陈健勇, 李浩, 陈颖, 等. 空气源热泵空调技术应用现状及发展前景[J]. 华电技术, 2021, 43(11):25-39. |
CHEN Jianyong, LI Hao, CHEN Ying, et al. Application status and perspectives of air-source heat pump air conditioning technology[J]. Huadian Technology, 2021, 43(11):25-39. | |
[21] | 王贵玲, 杨轩, 马凌, 等. 地热能供热技术的应用现状及发展趋势[J]. 华电技术, 2021, 43(11):15-24. |
WANG Guiling, YANG Xuan, MA Ling, et al. Status quo and prospects of geothermal energy in heat supply[J]. Huadian Technology, 2021, 43(11):15-24. | |
[22] | 王光辉, 唐新明, 张涛, 等. 全国建筑物遥感监测与分布式光伏建设潜力分析[J]. 中国工程科学, 2021, 23(6):92-100. |
WANG Guanghui, TANG Xinming, ZHANG Tao, et al. Building monitoring by remote sensing and analysis of distribute photovoltaic construction potentials[J]. Strategic Study of CAE, 2021, 23(6):92-100. | |
[23] | 住房和城乡建设部. 建筑节能与可再生能源利用通用规范[EB/OL].(2021-09-08)[2022-08-26]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/zfhcxjsbwj/202110/20211013_762460.html. |
[24] | 江苏省住建厅. 居住建筑热环境和节能设计标准[EB/OL].(2021-06-04)[2022-08-26]. https://dbba.sacinfo.org.cn/stdDetail/375e0bbff6b8c0a06c2be67a145d40c09bd05e50c465ef89e89d078dd8c8bc7b. |
[25] | 赵哲身. 建筑能源管理系统的窘境与对策[J]. 智能建筑, 2019(10):15-17,33. |
ZHAO Zheshen. The dilemma and countermeasures of building energy management system[J]. Intelligent Building, 2019(10):15-17,33. | |
[26] | 住房和城乡建设部. 城市信息模型基础平台技术标准[EB/OL].(2022-01-19)[2022-08-26]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/zfhcxjsbwj/202202/20220209_764450.html. |
[27] | 冯逸夫, 林慧, 章永洁, 等. 区域建筑综合能源发展趋势研究与实践案例[J]. 建设科技, 2021(21):87-90. |
FENG Yifu, LIN Hui, ZHANG Yongjie, et al. Research on development trend of regional building comprehensive energy and practical cases[J]. Construction Science and Technology, 2021(21):87-90. | |
[28] | 深圳市第七届人民代表大会常务委员会. 深圳经济特区绿色建筑条例[EB/OL].(2022-03-29)[2022-08-26]. http://www.szrd.gov.cn/rdlv/chwgg/content/post_777424.html. |
[1] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[2] | BAO Haibo, LIANG Junjie, LI Xiang. Modeling and analysis on demand response for generalized load of power supply systems in industrial parks [J]. Integrated Intelligent Energy, 2024, 46(1): 11-17. |
[3] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[4] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[5] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[6] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[7] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[8] | YU Haibin, GAO Yiling, LU Zengjie, DONG Shuai, LU Lin, REN Yizhi. Low-carbon economic scheduling of deep peak regulating market with the participation of wind power,thermal power,storage and carbon capture units considering demand response [J]. Integrated Intelligent Energy, 2023, 45(8): 80-89. |
[9] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[10] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
[11] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[12] | HU Ze, ZHU Ziqing, BU Siqi, CHAN Jiarong, WEI Xiang. Pricing strategy in district-level integrated energy market based on deep reinforcement learning [J]. Integrated Intelligent Energy, 2023, 45(7): 87-96. |
[13] | GE Leijiao, YU Weikun, ZHU Ruoyuan, WANG Guantao, BAI Xingzhen. Integrated energy system optimization scheduling considering improved stepped carbon trading mechanism and demand responses [J]. Integrated Intelligent Energy, 2023, 45(7): 97-106. |
[14] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[15] | XIONG Zhenzhen. Analysis on execution of VPPs for commercial buildings in Shanghai based on decision tree [J]. Integrated Intelligent Energy, 2023, 45(6): 66-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||