Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (4): 60-67.doi: 10.3969/j.issn.2097-0706.2024.04.008
• Grid-Connected Control of New Energy • Previous Articles Next Articles
MIAO Yuesen1(), XIA Hongjun2, HUANG Ningjie1, LI Yun1, ZHOU Shijie1,*(
)
Received:
2023-10-11
Revised:
2024-01-02
Published:
2024-04-25
Contact:
ZHOU Shijie
E-mail:miaoyuesen129@sina.com;zhousj1232@163.com
Supported by:
CLC Number:
MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer[J]. Integrated Intelligent Energy, 2024, 46(4): 60-67.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.04.008
[1] | YORO K O, DARAMOLA M O. CO2 emission sources, greenhouse gases, and the global warming effect[M]. Cambridge: Woodhead Publishing, 2020:3-28. |
[2] |
ZOU C N, PAN S Q, HAO Q. On the connotation, challenge and significance of China's "energy independence" strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 449-462.
doi: 10.1016/S1876-3804(20)60062-3 |
[3] | 高世楫, 俞敏. 中国提出“双碳”目标的历史背景、重大意义和变革路径[J]. 新经济导刊, 2021(2):4-8. |
[4] |
PARIDA B, INIYAN S, GOIC R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1625-1636.
doi: 10.1016/j.rser.2010.11.032 |
[5] |
马志程, 李维俊, 周强, 等. 含光热电站的风光联合发电系统互补效益评估[J]. 综合智慧能源, 2023, 45(2): 1-9.
doi: 10.3969/j.issn.2097-0706.2023.02.001 |
MA Zhicheng, LI Weijun, ZHOU Qiang, et al. Evaluation on the complementary benefit of a wind-solar combined power generation system with a photothermal power station[J]. Integrated Intelligent Energy, 2023, 45(2): 1-9.
doi: 10.3969/j.issn.2097-0706.2023.02.001 |
|
[6] | 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4):140-151. |
GONG Yingfei, LU Zongxiang, QIAO Ying, et al. An overview of photovoltaic energy system output forecasting technology[J]. Automation of Electric Power Systems, 2016, 40(4):140-151. | |
[7] | 刘洋, 于海东, 刘文彬, 等. 基于“云边端”协同的分布式光伏柔性调节体系架构[J]. 山东电力技术, 2023, 50(7):23-29. |
LIU Yang, YU Haidong, LIU Wenbin, et al. Architecture of distributed photovoltaic flexible regulation based on cloud-edge-end collaboration[J]. Shandong Electric Power, 2023, 50(7):23-29. | |
[8] | 贺国伟, 肖峻, 曹加胜. 考虑分布式光伏消纳的大型城市配电网规划实践[J]. 供用电, 2021, 38(10):26-34. |
HE Guowei, XIAO Jun, CAO Jiasheng. Planning practice of large urban distribution network considering distributed photovoltaic consumption[J]. Distribution & Utilization, 2021, 38(10):26-34. | |
[9] |
王鑫, 陈祖翠, 卞在平, 等. 基于粒子群优化算法的智慧微电网风光储容量优化配置[J]. 综合智慧能源, 2022, 44(6): 52-58.
doi: 10.3969/j.issn.2097-0706.2022.06.006 |
WANG Xin, CHEN Zucui, BIAN Zaiping, et al. Optimal allocation of a wind-PV-battery hybrid system in smart microgrid based on particle swarm optimization algorithm[J]. Integrated Intelligent Energy, 2022, 44(6): 52-58.
doi: 10.3969/j.issn.2097-0706.2022.06.006 |
|
[10] |
路晓敏, 张明, 邓星, 等. 考虑多重不确定性的多站融合容量优化配置方法[J]. 综合智慧能源, 2022, 44(1):31-38.
doi: 10.3969/j.issn.2097-0706.2022.01.005 |
LU Xiaomin, ZHANG Ming, DENG Xing, et al. Optimal capacity configuration for multi-station integration considering multiple uncertainties[J]. Integrated Intelligent Energy, 2022, 44(1): 31-38.
doi: 10.3969/j.issn.2097-0706.2022.01.005 |
|
[11] |
SANSA I, BOUSSAADA Z, BELLAAJ N M. Solar radiation prediction using a novel hybrid model of ARMA and NARX[J]. Energies, 2021, 14(21): 6920.
doi: 10.3390/en14216920 |
[12] | 林女贵. 基于经验模态分解和 ARIMA 模型的地区售电量预测[J]. 电器与能效管理技术, 2018(7):73-77. |
LIN Nügui. Regional electricity sales forecasting based on empirical mode decomposition and ARIMA model[J]. Electrical & Energy Management Technology, 2018(7):73-77. | |
[13] |
魏妍萍, 王军, 李南帆, 等. 基于Markov链的园区随机功率多场景预测模型[J]. 综合智慧能源, 2023, 45(1): 14-22.
doi: 10.3969/j.issn.2097-0706.2023.01.002 |
WEI Yanping, WANG Jun, LI Nanfan, et al. Prediction model of stochastic power in industrial parks based on Markov chain[J]. Integrated Intelligent Energy, 2023, 45(1): 14-22.
doi: 10.3969/j.issn.2097-0706.2023.01.002 |
|
[14] | 章熙, 郭翔, 万会江, 等. 一种基于BP神经网络的地区用电量预测方法研究[J]. 无线互联科技, 2019, 16(17):114-116. |
ZHANG Xi, GUO Xiang, WAN Huijiang, et al. Study a BP neural network based forecasting method for regional electricity consumption[J]. Wireless Internet Technology, 2019, 16(17):114-116. | |
[15] |
MALVONI M, DE GIORGI M G, CONGEDO P M. Data on Support Vector Machines (SVM) model to forecast photovoltaic power[J]. Data in Brief, 2016, 9: 13-16.
doi: 10.1016/j.dib.2016.08.024 pmid: 27622206 |
[16] | 于秋玲, 许长清, 李珊, 等. 基于模糊聚类和支持向量机的短期光伏功率预测[J]. 电力系统及其自动化学报, 2016, 28(12):115-118. |
YU Qiuling, XU Changqing, LI Shan, et al. Application of fuzzy clustering algorithm and support vector machine to short-term forecasting of PV power[J]. Proceedings of the CSU-EPSA, 2016, 28(12):115-118. | |
[17] |
XIA M, SHAO H D, MA X D, et al. A stacked GRU-RNN-based approach for predicting renewable energy and electricity load for smart grid operation[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 7050-7059.
doi: 10.1109/TII.2021.3056867 |
[18] | 田杨阳, 张小斐, 耿俊成, 等. 基于改进聚类和 LSTM 的居民小区中长期负荷预测[J]. 河南电力, 2020(S2):58-63. |
TIAN Yangyang, ZHANG Xiaofei, GENG Juncheng, et al. Medium- and long-term load forecasting of residential communities based on improved clustering and LSTM[J]. Henan Electric Power, 2020(S2):58-63. | |
[19] |
郑真, 朱峰, 马小丽, 等. 基于TL-LSTM的新能源功率短期预测[J]. 综合智慧能源, 2023, 45(1): 41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005 |
ZHENG Zhen, ZHU Feng, MA Xiaoli, er al. Short-term new energy power prediction based on TL-LSTM[J]. Integrated Intelligent Energy, 2023, 45(1): 41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005 |
|
[20] |
高明, 郝妍. 基于BiLSTM网络与误差修正的超短期负荷预测[J]. 综合智慧能源, 2023, 45(1): 31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004 |
GAO Ming, HAO Yan. Ultra-short-term load forecasting based on BiLSTM network and error correction[J]. Integrated Intelligent Energy, 2023, 45(1): 31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004 |
|
[21] | 王海燕, 刘佳康, 邓亚平. 基于预估-校正综合BP神经网络的短期光伏功率预测[J]. 智慧电力, 2023, 51(3):46-52. |
WANG Haiyan, LIU Jiakang, DENG Yaping. Short-term photovoltaic power forecasting based on predict-correct combination BP neural network[J]. Smart Power, 2023, 51(3):46-52. | |
[22] | 王粟, 隗磊锋, 曾亮. 基于GWO-SVM与随机森林的组合光伏功率预测模型[J]. 昆明理工大学学报(自然科学版), 2021, 46(5):82-88. |
WANG Su, WEI Leifeng, ZENG Liang. A combined model for photovoltaic power forecasting based on GWO-SVM and random forest[J]. Journal of Kunming University of Science and Technology(Natural Science), 2021, 46(5):82-88. | |
[23] | 李昭昱, 艾芊, 张宇帆, 等. 基于attention机制的LSTM神经网络超短期负荷预测方法[J]. 供用电, 2019, 36(1):17-22. |
LI Zhaoyu, AI Qian, ZHANG Yufan, et al. A LSTM neural network method based on attention mechanism for ultra short-term load forecasting[J]. Distribution & Utilization, 2019, 36(1):17-22. | |
[24] | SAJJAD M, KHAN Z A, ULLAH A, et al. A novel CNN-GRU based hybrid approach for short-term residential load forecasting[J]. IEEE Access, 2020,8:143759-143768. |
[25] |
JEBLI I, BELOUADHA F Z, KABBAJ M I, et al. Prediction of solar energy guided by Pearson correlation using machine learning[J]. Energy, 2021, 224: 120109.
doi: 10.1016/j.energy.2021.120109 |
[26] | 陈新和, 宋月新, 张立国, 等. 模型与数据混合驱动的分布式光伏超短期功率预测[J]. 供用电, 2023, 40(1):2-9. |
CHEN Xinhe, SONG Yuexin, ZHANG Liguo, et al. Ultra-short-term power prediction of distributed photovoltaic driven by model and data hybrid[J]. Distribution & Utilization, 2023, 40(1):2-9. | |
[27] | 谢宏文, 查浩, 陈庆文, 等. 一种使用CALSTM模型进行短期光伏功率预测的方法[J]. 供用电, 2020, 37(12):61-66. |
XIE Hongwen, ZHA Hao, CHEN Qingwen, et al. A method for short-term photovoltaic power prediction using CALSTM model[J]. Distribution & Utilization, 2020, 37(12):61-66. | |
[28] | 张磊, 王小明, 吴红斌, 等. 基于FCM和LSTM的光伏功率超短期预测[J]. 供用电, 2023, 40(1):10-17. |
ZHANG Lei, WANG Xiaoming, WU Hongbin, et al. Ultra-short-term prediction of PV power based on FCM and LSTM[J]. Distribution & Utilization, 2023, 40(1):10-17. | |
[29] | 史静, 李琥, 李冰洁, 等. 基于长短期记忆神经网络的配电网负荷预测方法研究[J]. 供用电, 2019, 36(7):71-77,90. |
SHI Jing, LI Hu, LI Bingjie, et al. Distribution network load forecasting based on LSTM neural network[J]. Distribution & Utilization, 2019, 36(7):71-77,90. | |
[30] | 比利时Elia公司运行数据[EB/OL].[2023-10-05]. https://opendata.elia.be/pages/home/. |
[31] | 邱大伟, 刘子辰, 周一青, 等. 基于 Transformer 神经网络的滚动轴承故障类型识别[J]. 高技术通讯, 2021, 31(1):1-11. |
QIU Dawei, LIU Zichen, ZHOU Yiqing, et al. A novel fault type detection method of rolling bearing using Transformer neural networks[J]. Chinese High Technology Letters, 2021, 31(1):1-11. | |
[32] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems, 2017:5998-6008. |
[33] | ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[EB/OL].(2020-12-14)[2023-10-02].https://doi.org/10.48550/arXiv.2012.07436. |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[3] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[4] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[5] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[6] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[7] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[8] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[9] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[10] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[11] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
[12] | YANG Bo, LI Chengyun, LYU Haoxuan, ZHOU Bowen, LI Guangdi, GU Peng. Power system transient stability assessment method based on multiple STA-GLN ensemble models [J]. Integrated Intelligent Energy, 2023, 45(7): 48-60. |
[13] | LIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network [J]. Integrated Intelligent Energy, 2023, 45(6): 1-8. |
[14] | DOU Zhenlan, SHEN Jianzhong, ZHANG Chunyan, JIANG Jingjing, CHEN Qi, CHEN Jing. Time-decoupling hierarchical energy management of integrated energy systems considering supply and demand uncertainty [J]. Integrated Intelligent Energy, 2023, 45(6): 17-24. |
[15] | HAN Chaobing, TANG Bing, YIN Ruilin, ZHU Zhengxiang, XUE Minghua, ZHU Jianfei, AI Chunmei, SUN Li. Research on modeling and characteristic simulation of a typical integrated energy system [J]. Integrated Intelligent Energy, 2023, 45(6): 49-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||