Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (9): 65-76.doi: 10.3969/j.issn.2097-0706.2023.09.009
• Energy Storage System • Previous Articles Next Articles
LI Qinggen(), SUN Na(
), DONG Haiying(
)
Received:
2023-06-12
Revised:
2023-06-27
Published:
2023-08-16
Supported by:
CLC Number:
LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm[J]. Integrated Intelligent Energy, 2023, 45(9): 65-76.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.09.009
Table 3
Optimized configuration results of the shared energy storage system
序号 | 功率/MW | 容量/(MW·h) | 储能配比/% | 消纳率/% | 配置成本/(万元·a-1) |
---|---|---|---|---|---|
1 | 56.37 | 302.54 | 14.83 | 95.52 | 2 180.35 |
2 | 56.37 | 324.64 | 14.83 | 96.00 | 2 300.44 |
3 | 56.37 | 370.85 | 14.83 | 97.00 | 2 551.59 |
4 | 56.37 | 417.06 | 14.83 | 98.00 | 2 802.73 |
5 | 60.94 | 462.70 | 16.04 | 99.00 | 3 094.20 |
6 | 80.59 | 508.91 | 21.21 | 100.00 | 3 532.30 |
[1] | 范英, 衣博文. 能源转型的规律、驱动机制与中国路径[J]. 管理世界, 2021, 37(8):95-105. |
FAN Ying, YI Bowen. Evolution, driving mechanism, and pathway of China's energy transition[J]. Journal of Management World, 2021, 37(8):95-105. | |
[2] | 徐婉迪, 魏来, 罗俊, 等. 储能产业发展带来的能源革命及其关键管理科学问题[J]. 系统管理学报, 2021, 30(1):191-197. |
XU Wandi, WEI Lai, LUO Jun, et al. Energy revolution empowered by development of energy storage industry and its key management science issues[J]. Journal of Systems & Management, 2021, 30(1):191-197. | |
[3] | 李牧南, 黄槿. 我国当前共享经济发展障碍与相关政策启示[J]. 科技管理研究, 2020, 40(8):237-242. |
LI Munan, HUANG Jin. Research on the barriers and policy implications of sharing economy in modern China[J]. Science and Technology Management Research, 2020, 40(8):237-242. | |
[4] | 李军徽, 侯涛, 穆钢, 等. 电力市场环境下考虑风电调度和调频极限的储能优化控制[J]. 电工技术学报, 2021, 36 (9) :1791-1804. |
LI Junhui, HOU Tao, MU Gang, et al. Optimal control strategy for energy storage considering wind farm scheduling plan and modulation frequency limitation under electricity market environment[J]. Transactions of China Electrotechnical Society, 2021, 36(9):1791-1804. | |
[5] | 熊宇峰, 司杨, 郑天文, 等. 基于主从博弈的工业园区综合能源系统氢储能优化配置[J]. 电工技术学报, 2021, 36(3): 507-516. |
XIONG Yufeng, SI Yang, ZHENG Tianwen, et al. Optimal configuration of hydrogen storage in industrial park integrated energy system based on stackelberg game[J]. Transactions of China Electrotechnical Society, 2021, 36(3):507-516. | |
[6] | 孙偲, 陈来军, 邱欣杰, 等. 基于合作博弈的发电侧共享储能规划模型[J]. 全球能源互联网, 2019, 2(4):360-366. |
SUN Cai, CHEN Laijun, QIU Xinjie, et al. A generation-side shared energy storage planning model based on cooperative game[J]. Journal of Global Energy Interconnection, 2019, 2(4):360-366. | |
[7] |
LIU J, ZHANG N, KANG C. Cloud energy storage for residential and small commercial consumers: A business case study[J]. Applied Energy, 2017, 188:226-236.
doi: 10.1016/j.apenergy.2016.11.120 |
[8] |
SUN L, QIU J, HAN X, et al. Capacity and energy sharing platform with hybrid energy storage system: An example of hospitality industry[J]. Applied Energy, 2020, 280:115897.
doi: 10.1016/j.apenergy.2020.115897 |
[9] | 邱伟强, 王茂春, 林振智, 等. “双碳”目标下面向新能源消纳场景的共享储能综合评价[J]. 电力自动化设备, 2021, 41(10):244-255. |
QIU Weiqiang, WANG Maochun, LIN Zhenzhi, et al. Comprehensive evaluation of shared energy storage towards new energy accommodation scenario under targets of carbon emission peak and carbon neutrality[J]. Electric Power Automation Equipment, 2021, 41(10):244-255. | |
[10] | 蒋从伟, 欧庆和, 吴仲超, 等. 基于联盟博弈的多微网共享储能联合配置与优化[J]. 中国电力, 2022, 55(12):11-21. |
JIANG Congwei, OU Qinghe, WU Zhongchao, et al. Joint configuration and optimization of multi-microgrid shared energy storage based on coalition game[J]. Electric Power, 2022, 55(12):11-21. | |
[11] | 苏向敬, 陈思利, 米阳, 等. 分布式电池储能在含高比例可再生能源不平衡配电网中的序次优化配置[J]. 电网技术, 2019, 43(10):3698-3707. |
SU Xiangjing, CHEN Sili, MI Yang, et al. Sequential and optimal placement of distributed battery energy storage systems within unbalanced distribution networks hosting high renewable penetrations[J]. Power System Technology, 2019, 43(10):3698-3707. | |
[12] | 朱佳明, 刘斌, 谢海远, 等. 基于二层规划的用户侧储能容量配置和最优运行策略分析[J]. 南方电网技术, 2016, 10(10):43-50. |
ZHU Jiaming, LIU Bin, XIE Haiyuan, et al. Energy storage capacity allocation and optimal operation strategy analysis at demand side based on bilevel programming[J]. Southern Power System Technology, 2016, 10(10):43-50. | |
[13] | 陈丽娟, 吴甜恬, 柳惠波, 等. 基于需量管理的两阶段大用户储能优化模型[J]. 电力系统自动化, 2019, 43(1):194-203. |
CHEN Lijuan, WU Tiantian, LIU Huibo, et al. Demand management based two-stage optimal storage model for large users[J]. Automation of Electric Power Systems, 2019, 43(1):194-203. | |
[14] | 赵乙潼, 王慧芳, 何奔腾, 等. 面向用户侧的电池储能配置与运行优化策略[J]. 电力系统自动化: 2020, 44(4):121-128. |
ZHAO Yitong, WANG Huifang, HE Benteng, et al. Optimization strategy of configuration and operation for user-side battery energy storage[J]. Automation of Electric Power Systems, 2020, 44(4):121-128. | |
[15] |
ZHANG Y, REN S, DONG Z Y, et al. Optimal placement of battery energy storage in distribution networks considering conservation voltage reduction and stochastic load composition[J]. IET Generation,Transmission & Distribution, 2017, 11(15):3862-3870.
doi: 10.1049/gtd2.v11.15 |
[16] |
TANG Y, LOW S H. Optimal placement of energy storage in distribution networks[J]. IEEE Transactions on Smart Grid, 2017, 8(6):3094-3103.
doi: 10.1109/TSG.2017.2711921 |
[17] |
WEN S, LAN H, FU Q, et al. Economic allocation for energy storage system considering wind power distribution[J]. IEEE Transactions on power Systems, 2014, 30(2):644-652.
doi: 10.1109/TPWRS.2014.2337936 |
[18] | 谢雨龙, 罗逸飏, 李智威, 等. 考虑微网新能源经济消纳的共享储能优化配置[J]. 高电压技术, 2022, 48(11):4403-4413. |
XIE Yulong, LUO Yiyang, LI Zhiwei, et al. Optimal allocation of shared energy storage considering the economic consumption of microgrid new energy[J]. High Voltage Engineering, 2022, 48(11):4403-4413. | |
[19] | 李咸善, 解仕杰, 方子健. 多微电网共享储能的优化配置及其成本分摊[J]. 电力自动化设备, 2021, 41(10):44-51. |
LI Xianshan, XIE Shijie, FANG Zijian. Optimal configuration of shared energy storage for multi-microgrid and its cost allocation[J]. Electric Power Automation Equipment, 2021, 41(10):44-51. | |
[20] | 帅轩越, 王秀丽, 黄晶. 多区域综合能源系统互联下的共享储能容量优化配置[J]. 全球能源互联网, 2021, 4(4):382-392. |
SHUAI Xuanyue, WANG Xiuli, HUANG Jing. Optimal configuration of shared energy storage capacity under multiple regional integrated energy systems interconnection[J]. Journal of Global Energy Interconnection, 2021, 4(4):382-392. | |
[21] | 刘轶涵, 徐青山, 杨永标, 等. 计及配电网潮流约束下基于广义纳什议价理论的工业用户共享储能配置[J]. 电网技术, 2023, 47(2):571-585. |
LIU Yihan, XU Qingshan, YANG Yongbiao, et al. Distribution network power flow constrained shared energy storage configuration for industrial consumers based on generalized Nash bargaining theory[J]. Power System Technology, 2023, 47(2):571-585. | |
[22] | 何锦华, 吴斌, 曹敏健, 等. 面向辅助服务的新能源场站共享储能容量优化配置[J]. 电力工程技术, 2022, 41(6):50-57. |
HE Jinhua, WU Bin, CAO Minjian, et al. Capacity optimization configuration of shared energy storage in renewable energy stations for ancillary service[J]. Electric Power Engineering Technology, 2022, 41(6): 50-57. | |
[23] | 武泽权, 牟永敏. 一种改进的鲸鱼优化算法[J]. 计算机应用研究, 2020, 37(12):3618-3621. |
WU Zequan, MU Yongmin. Improved whale optimization algorithm[J]. Application Research of Computers, 2020, 37(12):3618-3621. | |
[24] |
WATKINS W A, SCHEVILL W E. Aerial observation of feeding behavior in four baleen whales:Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus[J]. Journal of Mammalogy, 1979, 60(1): 155-163.
doi: 10.2307/1379766 |
[25] | 吴成智. 一种改进的鲸鱼优化算法[J]. 现代计算机, 2019(14):8-13. |
WU Chengzhi. An improved whale optimization algorithm[J]. Modern Computer, 2019(14):8-13. | |
[26] |
张永, 陈锋. 一种改进的鲸鱼优化算法[J]. 计算机工程, 2018, 44(3):208-213,219.
doi: 10.3969/j.issn.1000-3428.2018.03.035 |
ZHANG Yong, CHEN Feng. A modified whale optimization algorithm[J]. Computer Engineering, 2018, 44(3):208-213,219.
doi: 10.3969/j.issn.1000-3428.2018.03.035 |
|
[27] |
褚鼎立, 陈红, 王旭光. 基于自适应权重和模拟退火的鲸鱼优化算法[J]. 电子学报, 2019, 47(5):992-999.
doi: 10.3969/j.issn.0372-2112.2019.05.003 |
CHU Dingli, CHEN Hong, WANG Xuguang. Whale optimization algorithm based on adaptive weight and simulated annealing[J]. Acta Electronica Sinica, 2019, 47(5):992-999.
doi: 10.3969/j.issn.0372-2112.2019.05.003 |
|
[28] | 覃溪, 龙文. 基于随机差分变异的改进鲸鱼优化算法[J]. 中国科技论文, 2018, 13(8):937-942. |
QIN Xi, LONG Wen. An improved whale optimization algorithm based on stochastic difference mutation[J]. China Sciencepaper, 2018, 13(8):937-942. | |
[29] | 曹文梁. 随机差分变异粒子群混合优化算法[J]. 电子测量与仪器学报, 2017, 31(6):928-933. |
CAO Wenliang. Hybrid algorithm based on particle swarm optimization with stochastic differential mutation[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(6):928-933. | |
[30] |
王翔, 胡明, 闫岩, 等. 基于改进量子粒子群算法的综合能源系统优化配置[J]. 综合智慧能源, 2022, 44(10): 19-24.
doi: 10.3969/j.issn.2097-0706.2022.10.003 |
WANG Xiang, HU Ming, YAN Yan, et al. Optimal configuration of integrated energy system based on improved quantum particle swarm optimization[J]. Integrated Intelligent Energy, 2022, 44(10): 19-24.
doi: 10.3969/j.issn.2097-0706.2022.10.003 |
|
[31] |
屈涛涛, 綦晓, 蒋文珂, 等. 考虑风电机组虚拟惯量的新型电力系统频率分布式模型预测控制策略[J]. 综合智慧能源, 2022, 44(10): 25-32.
doi: 10.3969/j.issn.2097-0706.2022.10.004 |
QU Taotao, QI Xiao, JIANG Wenke, et al. Frequency distributed model predictive control strategy for the new power system considering virtual inertia of wind turbines[J]. Integrated Intelligent Energy, 2022, 44(10): 25-32.
doi: 10.3969/j.issn.2097-0706.2022.10.004 |
|
[32] |
李朋真, 刘艳红, 吴振龙. 高比例可再生能源的多区域电力系统负荷频率自抗扰控制[J]. 综合智慧能源, 2022, 44(10): 33-41.
doi: 10.3969/j.issn.2097-0706.2022.10.005 |
LI Pengzhen, LIU Yanhong, WU Zhenlong. Active disturbance rejection control on load frequency of multi-area power systems with high-proportion renewable energy[J]. Integrated Intelligent Energy, 2022, 44(10): 33-41.
doi: 10.3969/j.issn.2097-0706.2022.10.005 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||