Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (9): 11-19.doi: 10.3969/j.issn.2097-0706.2022.09.002
• Integrated Energy System • Previous Articles Next Articles
ZHONG Pengyuan1(
), YANG Xiaohong1(
), KOU Jianyu2,*(
)
Received:2022-05-23
Revised:2022-07-27
Published:2022-09-25
Contact:
KOU Jianyu
E-mail:z4280211312@163.com;yxh1109@163.com;kjianyu2011@126.com
CLC Number:
ZHONG Pengyuan, YANG Xiaohong, KOU Jianyu. Research on the optimal configuration of integrated energy systems for parks with hydrogen storage devices[J]. Integrated Intelligent Energy, 2022, 44(9): 11-19.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.09.002
Table 1
Parameters of energy storage equipment
| 参数 | HST | TES | EES |
|---|---|---|---|
| 单位购置成本/元 | 300 | 320 | 1 800 |
| 单位替换成本/元 | 280 | 280 | 1 500 |
| 单位运维成本/元 | 0.002 0 | 0.003 4 | 0.004 0 |
| 输入效率 | 0.97 | 0.91 | 0.95 |
| 输出效率 | 0.97 | 0.91 | 0.95 |
| 功率下限 | 0.00 | 0.00 | 0.00 |
| 功率上限 | 0.20 SHST | 0.20 STES | 0.20 SEES |
| 储能上限 | 0.95 SHST | 1.00 STES | 1.00 SEES |
| 储能下限 | 0.20 SHST | 0.10 STES | 0.10 SEES |
| 自损耗率 | 0.010 | 0.010 | 0.001 |
Table 4
Capacity configuration of the equipment
| 设备 | 单位 | 场景1 | 场景2 | 场景3 | 场景4 |
|---|---|---|---|---|---|
| PV | MW | 89.1 | 59.7 | 91.5 | 59.7 |
| WT | MW | 372.0 | 388.0 | 368.0 | 388.0 |
| EL | MW | 4.9 | — | 4.1 | — |
| HFC | MW | 15.6 | — | 16.0 | — |
| HST | kg | 3 898.0 | — | 4 001.0 | — |
| EES | MW·h | — | 67.8 | — | 67.8 |
| TES | MW·h | 179.9 | 180.0 | 180.0 | 180.0 |
| EB | MW | 159.2 | 127.4 | 178.6 | 127.4 |
| ER | MW | 78.6 | 78.6 | 78.6 | 78.6 |
| AR | MW | 0.0 | 0.0 | 0.0 | 0.0 |
| [1] |
HONG B, CHEN J, ZHANG W, et al. Integrated energy system planning at modular regional-user level based on a two-layer bus structure[J]. CSEE Journal of Power and Energy System, 2018, 4(2):188-196.
doi: 10.17775/CSEEJPES.2018.00110 |
| [2] | 郝然, 艾芊, 姜子卿. 区域综合能源系统多主体非完全信息下的双层博弈策略[J]. 电力系统自动化, 2018, 42(4):194-201. |
| HAO Ran, AI Qian, JIANG Ziqing. Bi-level game strategy for multi-agent with incomplete information in regional integrated energy system[J]. Automation of Electric Power Systems, 2018, 42(4):194-201. | |
| [3] |
WANG Y, HUANG Y, WANG Y, et al. Optimal scheduling of the RIES considering time-based demand response programs with energy price[J]. Energy, 2018, 164(1):773-793.
doi: 10.1016/j.energy.2018.09.014 |
| [4] | 于雪风. 含储氢及储热的园区综合能源系统优化配置与运行研究[D]. 北京: 华北电力大学, 2020. |
| [5] | 王玉东. 基于双层优化的区域综合能源系统规划研究[D]. 北京: 华北电力大学, 2020. |
| [6] | 边晓燕, 史越奇, 裴传逊, 等. 计及经济性和可靠性因素的区域综合能源系统双层协同优化配置[J]. 电工技术学报, 2021, 36(21):4529-4543. |
| BIAN Xiaoyan, SHI Yueqi, PEI Chuanxun, et al. Bi-level collaborative configuration optimization of ICES considering economy and reliability[J]. Transactions of China Electrotechnical Society, 2021, 36(21):4529-4543. | |
| [7] | 张海静, 杨雍琦, 赵昕, 等. 计及需求响应的区域综合能源系统双层优化调度策略[J]. 中国电力, 2021, 54(4): 141-150. |
| ZHANG Haijing, YANG Yongqi, ZHAO Xin, et al. Two-level optimal dispatching strategy for regional integrated energy system considering demand response[J]. Electric Power, 2021, 54(4):141-150. | |
| [8] | 章文浦, 王强钢. 基于遗传算法的分布式多能互补能源系统优化配置[J]. 华电技术, 2021, 43(1):52-58. |
| ZHANG Wenpu, WANG Qianggang. Optimal allocation of multi-energy complementary distributed energy system based on genetic algorithm[J]. Huadian Technology, 2021, 43(1):52-58. | |
| [9] | 吴福保, 史如新, 桑丙玉, 等. 考虑能量成本和污染排放的综合能源系统优化配置[J]. 热力发电, 2021, 50(2):10-17. |
| WU Fubao, SHI Ruxin, SANG Bingyu, et al. Optimization of integrated energy system considering energy cost and pollution emission[J]. Thermal Power Generation, 2021, 50(2):10-17. | |
| [10] | 仇知, 王蓓蓓, 贲树俊, 等. 计及不确定性的区域综合能源系统双层优化配置规划模型[J]. 电力自动化设备, 2019, 39(8):176-185. |
| QIU Zhi, WANG Beibei, JIA Shujun, et al. Bi-level optimal configuration planning model of regional integrated energy system considering uncertainties[J]. Electric Power Automation Equipment, 2019, 39(8):176-185. | |
| [11] | 赵鑫, 郑文禹, 侯智华, 等. 基于粒子群优化算法的多能互补系统经济调度研究[J]. 华电技术, 2021, 43(4):14-20. |
| ZHAO Xin, ZHENG Wenyu, HOU Zhihua, et al. Research on economic dispatch of multi-energy complementary system based on particle swarm optimization[J]. Huadian Technology, 2021, 43(4):14-20. | |
| [12] | 潘华, 肖雨涵, 梁作放, 等. 基于复杂网络的电-气-热综合能源系统健壮性分析[J]. 电力自动化设备, 2019, 39(8):104-112. |
| PAN Hua, XIAO Yuhan, LIANG Zuofang, et al. Robustness analysis of electricity-gas-heat integrated energy system based on complex network[J]. Electric Power Automation Equipment, 2019, 39(8):104-112. | |
| [13] | 毛志斌, 陈琦, 王威力, 等. 基于果蝇算法的综合能源系统容量优化配置研究[J]. 内江科技, 2021, 42(5):13-14. |
| [14] |
LUO F, SHAO J, JIAO Z, et al. Research on optimal allocation strategy of multiple energy storage in regional integrated energy system based on operation benefit increment[J]. International Journal of Electrical Power and Energy Systems, 2021, 125:106376.
doi: 10.1016/j.ijepes.2020.106376 |
| [15] | 吴桂联, 林婷婷, 郑洁云, 等. 大型园区综合能源系统能源站优化配置[J]. 电力系统及其自动化学报, 2019, 31(9):116-122. |
| WU Guilian, LIN Tingting, ZHENG Jieyun, et al. Optimal allocation of energy stations in large-scale park integrated energy system[J]. Proceedings of the CSU-EPSA, 2019, 31(9):116-122. | |
| [16] | 宋倩倩. 生态园区综合能源利用双层多目标优化配置研究[D]. 保定: 河北农业大学, 2021. |
| [17] | 中国氢能联盟. 中国氢能源及燃料电池产业白皮书(2019版)[R]. 2019. |
| [18] | 任大伟, 侯金鸣, 肖晋宇, 等. 能源电力清洁化转型中的储能关键技术探讨[J]. 高电压技术, 2021, 47(8):2751-2759. |
| REN Dawei, HOU Jinming, XIAO Jinyu, et al. Exploration of key technologies for energy storage in the cleansing transformation of energy and power[J]. High Voltage Engineering, 2021, 47(8):2751-2759. | |
| [19] | 王长君, 刘硕, 丁薛峰. 相变储能技术在清洁供暖中的应用研究[J]. 华电技术, 2020, 42(11):91-96. |
| WANG Changjun, LIU Shuo, DING Xuefeng. The study on application of phase change energy storage technology in clean heating[J]. Huadian Technology, 2020, 42(11):91-96. | |
| [20] |
蒋文坤, 韩颖慧, 薛智文, 等. 多能互补能源系统中储能原理及其应用[J]. 综合智慧能源, 2022, 44(1):63-71.
doi: 10.3969/j.issn.2097-0706.2022.01.009 |
|
JIANG Wenkun, HAN Yinghui, XUE Zhiwen, et al. Energy storage technologies and their applications in multi-energy complementary power system[J]. Integrated Intelligent Energy, 2022, 44(1):63-71.
doi: 10.3969/j.issn.2097-0706.2022.01.009 |
|
| [21] | 高章鹏. 面向园区微网的综合能源系统优化配置与运行研究[D]. 北京: 华北电力大学, 2019. |
| [22] | 林晓明, 张勇军, 陈伯达, 等. 计及多评价指标的园区能源互联网双层优化配置[J]. 电力系统自动化, 2019, 43(20):8-15,30. |
| LIN Xiaoming, ZHANG Yongjun, CHEN Boda, et al. Bi-level optimal configuration of park energy internet considering multiple evaluation indicators[J]. Automation of Electric Power Systems, 2019, 43(20):8-15,30. | |
| [23] |
HOLJEVAC N, CAPUDER T, ZHANG N, et al. Corrective receding horizon scheduling of flexible distributed multi-energy micro-grids[J]. Applied Energy, 2017, 207: 176-194.
doi: 10.1016/j.apenergy.2017.06.045 |
| [1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
| [2] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
| [3] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
| [4] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
| [5] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
| [6] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
| [7] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
| [8] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
| [9] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
| [10] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
| [11] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
| [12] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
| [13] | YANG Bo, LI Chengyun, LYU Haoxuan, ZHOU Bowen, LI Guangdi, GU Peng. Power system transient stability assessment method based on multiple STA-GLN ensemble models [J]. Integrated Intelligent Energy, 2023, 45(7): 48-60. |
| [14] | LI Jing, DOU Zhenlan, WANG Jiaxiang, ZHANG Chunyan, LU Tao, NI Yaobing. Research on power distribution strategy of an RSOC-based wind-photovoltaic-hydrogen energy system [J]. Integrated Intelligent Energy, 2023, 45(7): 78-86. |
| [15] | LIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network [J]. Integrated Intelligent Energy, 2023, 45(6): 1-8. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

