Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (2): 43-48.doi: 10.3969/j.issn.2097-0706.2024.02.006
• Market and Flow Analysis • Previous Articles Next Articles
Received:
2023-05-06
Revised:
2023-10-23
Published:
2024-02-25
Supported by:
CLC Number:
LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids[J]. Integrated Intelligent Energy, 2024, 46(2): 43-48.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.02.006
[1] |
BOLOGNANI S, CARLI R, CAVRARO G, et al. Distributed reactive power feedback control for voltage regulation and loss minimization[J]. IEEE Transactions on Automatic Control, 2015, 60(4): 966-981.
doi: 10.1109/TAC.2014.2363931 |
[2] |
WANG Z Y, CHEN B K, WANG J H, et al. Coordinated energy management of networked microgrids in distribution systems[J]. IEEE Transactions on Smart Grid, 2015, 6(1):45-53.
doi: 10.1109/TSG.2014.2329846 |
[3] |
WANG S S, WANG K, TENG F, et al. An affine arithmetic-based multi-objective optimization method for energy storage systems operating in active distribution networks with uncertainties[J]. Applied Energy, 2018, 223: 215-228.
doi: 10.1016/j.apenergy.2018.04.037 |
[4] |
NIKNAM T, MEYMAND H Z, MOJARRAD H D. An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants[J]. Energy, 2011, 36(1): 119-132.
doi: 10.1016/j.energy.2010.10.062 |
[5] |
NIKNAM T, MEYMAND H Z, MOJARRAD H D, et al. Multi-objective daily operation management of distribution network considering fuel cell power plants[J]. IET Renewable Power Generation, 2011, 5(5): 356-367.
doi: 10.1049/iet-rpg.2010.0190 |
[6] |
LV T G, AI Q. Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources[J]. Applied Energy, 2016, 163: 408-422.
doi: 10.1016/j.apenergy.2015.10.179 |
[7] |
GUO L, WANG N, LU H, et al. Multi-objective optimal planning of the stand-alone microgrid system based on different benefit subjects[J]. Energy, 2016, 116: 353-363.
doi: 10.1016/j.energy.2016.09.123 |
[8] |
AMELI A, BAHRAMI S, KHAZAELI F, et al. A multiobjective particle swarm optimization for sizing and placement of DGs from DG owner's and distribution company's viewpoints[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1831-1840.
doi: 10.1109/TPWRD.2014.2300845 |
[9] |
GAO Y J, HU X B, YANG W H, et al. Multi-objective bilevel coordinated planning of distributed generation and distribution network frame based on multiscenario technique considering timing characteristics[J]. IEEE Transactions on Sustainable Energy 2017, 8(4):1415-1429.
doi: 10.1109/TSTE.2017.2680462 |
[10] |
GUGGILAM S S, DALL'ANESE E, CHEN Y C, et al. Scalable optimization methods for distribution networks with high PV integration[J]. IEEE Transactions on Smart Grid, 2016, 7(4): 2061-2070.
doi: 10.1109/TSG.2016.2543264 |
[11] |
HADDADIAN H, NOROOZIAN R. Multi-microgrids approach for design and operation of future distribution networks based on novel technical indices[J]. Applied Energy, 2017, 185: 650-663.
doi: 10.1016/j.apenergy.2016.10.120 |
[12] |
QI Q, WU J Z, LONG C. Multi-objective operation optimization of an electrical distribution network with soft open point[J]. Applied Energy, 2017, 208: 734-744.
doi: 10.1016/j.apenergy.2017.09.075 |
[13] |
MORSHED M J, HMIDA J B, FEKIH A. A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems[J]. Applied Energy, 2018, 211: 1136-1149.
doi: 10.1016/j.apenergy.2017.11.101 |
[14] |
ZHANG S X, CHENG H Z, LI K, et al. Multi-objective distributed generation planning in distribution network considering correlations among uncertainties[J]. Applied Energy, 2018, 226: 743-755.
doi: 10.1016/j.apenergy.2018.06.049 |
[15] |
DI SOMMA M, YAN B, BIANCO N, et al. Multi-objective design optimization of distributed energy systems through cost and exergy assessments[J]. Applied Energy, 2017, 204: 1299-1316.
doi: 10.1016/j.apenergy.2017.03.105 |
[16] |
DAVOODI E, BABAEI E, MOHAMMADI-IVATLOO B. An efficient covexified SDP model for multi-objective optimal power flow[J]. International Journal of Electrical Power & Energy Systems, 2018, 102: 254-264.
doi: 10.1016/j.ijepes.2018.04.034 |
[17] |
WEI P C, HE F C, LI L, et al. Multi-objective problem based operation and emission cots for heat and power hub model through peak load management in large scale users[J]. Energy Conversion and Management, 2018, 171: 411-426.
doi: 10.1016/j.enconman.2018.05.025 |
[18] |
ROMAN C, ROSEHART W. Evenly distributed Pareto points in multi-objective optimal power flow[J]. IEEE Transactions on Power Systems, 2006, 21(2):1011-1012.
doi: 10.1109/TPWRS.2006.873010 |
[19] |
MESSAC A, ISMAIL-YAHAYA A, MATTSON C A. The normalized normal constraint method for generating the Pareto frontier[J]. Structural and Multidisciplinary Optimization, 2003, 25: 86-98.
doi: 10.1007/s00158-002-0276-1 |
[20] |
LI Q, LIU M B, LIU H Y. Piecewise normalized normal constraint method applied to minimization of voltage deviation and active power loss in an AC-DC hybrid power system[J]. IEEE Transactions on Power Systems, 2014, 30(3): 1243-1251.
doi: 10.1109/TPWRS.2014.2343625 |
[21] |
张兴科, 魏朝阳, 王康平, 等. 面向高比例光伏并网的火电爬坡压力缓解策略[J]. 综合智慧能源, 2022, 44(1): 1-8.
doi: 10.3969/j.issn.2097-0706.2022.01.001 |
ZHANG Xingke, WEI Chaoyang, WANG Kangping, et al. Strategies for relieving ramp pressure of thermal power units with high-proportion photovoltaic power connecting to the grid[J]. Integrated Intelligent Energy, 2022, 44(1): 1-8.
doi: 10.3969/j.issn.2097-0706.2022.01.001 |
|
[22] |
石立宝, 翟放. 考虑风-光-荷不确定性的数据驱动型机组组合模型[J]. 综合智慧能源, 2022, 44(1): 18-25.
doi: 10.3969/j.issn.2097-0706.2022.01.003 |
SHI Libao, ZHAI Fang. Data-driven unit commitment model incorporating the uncertainty of wind-PV-load[J]. Integrated Intelligent Energy, 2022, 44(1): 18-25.
doi: 10.3969/j.issn.2097-0706.2022.01.003 |
|
[23] |
路晓敏, 张明, 邓星, 等. 考虑多重不确定性的多站融合容量优化配置方法[J]. 综合智慧能源, 2022, 44(1): 31-38.
doi: 10.3969/j.issn.2097-0706.2022.01.005 |
LU Xiaomin, ZHANG Ming, DENG Xing, et al. Optimal capacity configuration for multi-station integration considering multiple uncertainties[J]. Integrated Intelligent Energy, 2022, 44(1): 31-38.
doi: 10.3969/j.issn.2097-0706.2022.01.005 |
|
[24] |
KHOSHFETRAT PAKAZAD S, HANSSON A, ANDERSEN M S, et al. Distributed primal-dual interior-point methods for solving tree-structured coupled convex problems using message-passing[J]. Optimization Methods and Software, 2017, 32(3): 401-435.
doi: 10.1080/10556788.2016.1213839 |
[25] | TAN S W, LIN S J, YANG L Q, et al. Multi-objective optimal power flow model for power system operation dispatching[C]// 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2013: 1-6. |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[3] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[4] | FENG Ji, YANG Guohua, SHI Lei, PAN Huan, LU Yuxiang, ZHANG Yuanxi, LI Zhen. Research on fault diagnosis of active distribution network based on parallel fusion deep residual shrinkage network [J]. Integrated Intelligent Energy, 2024, 46(6): 8-15. |
[5] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[6] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[7] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[8] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[9] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[10] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[11] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[12] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
[13] | YANG Bo, LI Chengyun, LYU Haoxuan, ZHOU Bowen, LI Guangdi, GU Peng. Power system transient stability assessment method based on multiple STA-GLN ensemble models [J]. Integrated Intelligent Energy, 2023, 45(7): 48-60. |
[14] | LIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network [J]. Integrated Intelligent Energy, 2023, 45(6): 1-8. |
[15] | DOU Zhenlan, SHEN Jianzhong, ZHANG Chunyan, JIANG Jingjing, CHEN Qi, CHEN Jing. Time-decoupling hierarchical energy management of integrated energy systems considering supply and demand uncertainty [J]. Integrated Intelligent Energy, 2023, 45(6): 17-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||