Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (6): 8-15.doi: 10.3969/j.issn.2097-0706.2024.06.002
• New Energy Modelling • Previous Articles Next Articles
FENG Ji1(), YANG Guohua1,2,*(
), SHI Lei2, PAN Huan1, LU Yuxiang1, ZHANG Yuanxi1, LI Zhen1
Received:
2024-01-03
Revised:
2024-03-18
Published:
2024-06-25
Contact:
YANG Guohua
E-mail:fj065frontile@163.com;ygh@nxu.edu.cn
Supported by:
CLC Number:
FENG Ji, YANG Guohua, SHI Lei, PAN Huan, LU Yuxiang, ZHANG Yuanxi, LI Zhen. Research on fault diagnosis of active distribution network based on parallel fusion deep residual shrinkage network[J]. Integrated Intelligent Energy, 2024, 46(6): 8-15.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.06.002
Table 2
Performance evaluation on the model interference by noise
信噪比/dB | 灰度图+P-DRN | 时频图+P-DRN | 灰度图+P-DRSN | 时频图+P-DRSN | P-FDRN | P-FDRSN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
定位准确率/% | 识别准确率/% | 定位准确率/% | 识别准确率/% | 定位准确率/% | 识别准确率/% | 定位准确率/% | 识别准确率/% | 定位准确率/% | 识别准确率/% | 定位准确率/% | 识别准确率/% | |
37.36 | 94.75 | 94.17 | 95.25 | 93.33 | 95.33 | 96.42 | 96.67 | 94.50 | 97.08 | 96.42 | 99.00 | 98.50 |
31.30 | 93.83 | 93.83 | 94.58 | 92.67 | 95.17 | 95.17 | 95.75 | 93.92 | 96.67 | 96.08 | 98.58 | 98.33 |
27.01 | 93.08 | 92.67 | 93.67 | 91.75 | 94.42 | 94.33 | 94.17 | 93.42 | 95.25 | 95.17 | 98.25 | 97.42 |
25.57 | 92.42 | 92.08 | 93.00 | 90.42 | 93.67 | 93.58 | 94.58 | 92.75 | 94.83 | 94.42 | 97.83 | 97.00 |
23.54 | 91.28 | 91.50 | 92.58 | 88.25 | 92.75 | 93.50 | 94.50 | 92.25 | 94.00 | 93.50 | 97.25 | 96.75 |
Table 4
Fault diagnosis results of the DG under different outputs %
DG接入 情况 | 输出功率水平 | 灰度图+P-DRN | 时频图+P-DRN | 灰度图+P-DRSN | 时频图+P-DRSN | P-FDRN | P-FDRSN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
定位准确率 | 识别准确率 | 定位准确率 | 识别准确率 | 定位准确率 | 识别准确率 | 定位准确率 | 识别准确率 | 定位准确率 | 识别准确率 | 定位准确率 | 识别准确率 | ||
风电 | 40 | 90.75 | 91.92 | 93.50 | 89.67 | 92.25 | 93.92 | 95.33 | 91.75 | 96.17 | 95.17 | 97.67 | 97.17 |
风电 | 70 | 93.25 | 93.17 | 95.42 | 91.33 | 93.42 | 95.08 | 96.17 | 93.67 | 97.25 | 96.08 | 97.92 | 97.75 |
光伏 | 50 | 93.25 | 92.75 | 94.75 | 90.08 | 93.67 | 94.17 | 96.00 | 93.25 | 96.58 | 95.42 | 97.92 | 97.50 |
光伏 | 70 | 94.00 | 93.42 | 95.58 | 91.67 | 94.92 | 95.75 | 96.92 | 94.58 | 97.42 | 96.50 | 98.33 | 97.83 |
风电、光伏 | 50,70 | 93.67 | 94.67 | 96.25 | 91.50 | 94.25 | 95.67 | 96.42 | 93.83 | 96.33 | 95.75 | 98.58 | 98.08 |
风电、光伏 | 100,40 | 94.33 | 95.08 | 96.67 | 92.83 | 95.25 | 96.33 | 97.25 | 95.08 | 97.67 | 97.17 | 99.00 | 98.58 |
[1] | 曲正伟, 张嘉曦, 王云静, 等. 考虑分布式电源不确定性的配电网改进仿射状态估计[J]. 电力系统自动化, 2021, 45(23): 104-112. |
QU Zhengwei, ZHANG Jiaxi, WANG Yunjing, et al. Improved affine state estimation for distribution network considering uncertainty of distributed generator[J]. Automation of Electric Power Systems, 2021, 45(23): 104-112. | |
[2] | 晁晨栩, 郑晓冬, 高飘, 等. 含高比例光伏配电网的高频阻抗差动保护[J]. 中国电机工程学报, 2021, 41(20): 6968-6979. |
CHAO Chenxu, ZHENG Xiaodong, GAO Piao, et al. High frequency impedance differential protection with high proportion of photovoltaic power distribution network[J]. Proceedings of the CSEE, 2021, 41(20): 6968-6979. | |
[3] | CHEN K J, HU J, ZHANG Y, et al. Fault location in power distribution systems via deep graph convolutional networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(1):119-131. |
[4] | 徐岩, 邹南, 马天祥. 逆变型分布式电源接入配电网单相断线故障零序电压分析[J]. 电力系统保护与控制, 2022, 50(2): 41-51. |
XU Yan, ZOU Nan, MA Tianxiang. Analysis of zero-sequence voltage of a single-phase disconnection fault of inverter interfaced distributed generation connected to a distribution network[J]. Power System Protection and Control, 2022, 50(2): 41-51. | |
[5] | 马喜平, 贾嵘, 梁琛, 等. 高比例新能源接入下电力系统降损研究综述[J]. 电网技术, 2022, 46(11): 4305-4315. |
MA Xiping, JIA Rong, LIANG Chen, et al. Review of research on loss reduction in the context of high penetration of renewable power generation[J]. Power System Technology, 2022, 46(11): 4305-4315. | |
[6] | XIAO J, ZU G Q, ZHOU H, et al. Total quadrant security region for active distribution network with high penetration of distributed generation[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(1): 128-137. |
[7] | SHARMA S, NIAZI K R, VERMA K, et al. Impact of battery energy storage,controllable load and network reconfiguration on contemporary distribution network under uncertain environment[J]. IET Generation, Transmission & Distribution, 2020, 14(21): 4719-4727. |
[8] | 詹惠瑜, 刘科研, 盛万兴, 等. 有源配电网故障诊断与定位方法综述及展望[J]. 高电压技术, 2023, 49(2): 660-671. |
ZHAN Huiyu, LIU Keyan, SHENG Wanxing, et al. Literature review and prospects of fault diagnosis in active distribution network[J]. High Voltage Engineering, 2023, 49(2): 660-671. | |
[9] | 吉兴全, 张朔, 张玉敏, 等. 基于IELM算法的配电网故障区段定位[J]. 电力系统自动化, 2021, 45(22): 157-166. |
JI Xingquan, ZHANG Shuo, ZHANG Yumin, et al. Fault section location for distribution network based on improved electromagnetism-like mechanism algorithm[J]. Automation of Electric Power Systems, 2021, 45(22): 157-166. | |
[10] | 高锋阳, 曾林, 李昭君, 等. 分布式智能协同和云计算相结合的配电网故障选线新方法[J]. 电网技术, 2021, 45(8): 2969-2978. |
GAO Fengyang, ZENG Lin, LI Zhaojun, et al. A new fault line selection method for distribution network based on distributed intelligent collaboration and cloud computing[J]. Power System Technology, 2021, 45(8): 2969-2978. | |
[11] | 齐郑, 赵昕一, 陈艳波. 暂态与稳态相不对称信号相结合的配电网单相接地故障感知技术[J]. 高电压技术, 2022, 48(4): 1264-1276. |
QI Zheng, ZHAO Xinyi, CHEN Yanbo. Single phase grounding fault sensing technology in distribution network based on transient and steady state phase unsymmetrical signals[J]. High Voltage Engineering, 2022, 48(4): 1264-1276. | |
[12] | 洪翠, 连淑婷, 郭谋发, 等. 经验小波变换在直流配电系统故障检测中的应用[J]. 电机与控制学报, 2021, 25(12): 65-74. |
HONG Cui, LIAN Shuting, GUO Moufa, et al. Application of empirical wavelet transform in fault detection of DC distribution system[J]. Electric Machines and Control, 2021, 25(12): 65-74. | |
[13] | 张晨浩, 李洋, 宋国兵, 等. 基于模型识别的配电网谐波源定位方法[J]. 中国电机工程学报, 2021, 41(17): 5803-5813. |
ZHANG Chenhao, LI Yang, SONG Guobing, et al. Harmonic source location method for distribution networks based on model recognition[J]. Proceedings of the CSEE, 2021, 41(17): 5803-5813. | |
[14] | 束洪春, 龚振, 田鑫萃, 等. 基于故障特征频带及形态谱的单相接地故障选线[J]. 电网技术, 2019, 43(3): 1041-1048. |
SHU Hongchun, GONG Zhen, TIAN Xincui, et al. Single line-to-ground fault line selection based on fault characteristic frequency band and morphological spectrum[J]. Power System Technology, 2019, 43(3): 1041-1048. | |
[15] | 喻锟, 胥鹏博, 曾祥君, 等. 基于模糊测度融合诊断的配电网接地故障选线[J]. 电工技术学报, 2022, 37(3): 623-633. |
YU Kun, XU Pengbo, ZENG Xiangjun, et al. Grounding fault line selection of distribution networks based on fuzzy measures integrated diagnosis[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 623-633. | |
[16] | 和敬涵, 罗国敏, 程梦晓, 等. 新一代人工智能在电力系统故障分析及定位中的研究综述[J]. 中国电机工程学报, 2020, 40(17): 5506-5516. |
HE Jinghan, LUO Guomin, CHENG Mengxiao, et al. A research review on application of artificial intelligence in power system fault analysis and location[J]. Proceedings of the CSEE, 2020, 40(17): 5506-5516. | |
[17] | LIANG J F, JING T J, NIU H N, et al. Two-terminal fault location method of distribution network based on adaptive convolution neural network[J]. IEEE Access, 2020, 8: 54035-54043. |
[18] | 刘科研, 董伟杰, 肖仕武, 等. 基于电压数据SVM分类的有源配电网故障判别及定位[J]. 电网技术, 2021, 45(6): 2369-2379. |
LIU Keyan, DONG Weijie, XIAO Shiwu, et al. Fault identification and location of active distribution network based on SVM classification of voltage data[J]. Power System Technology, 2021, 45(6): 2369-2379. | |
[19] | 李佳玮, 王小君, 和敬涵, 等. 基于图注意力网络的配电网故障定位方法[J]. 电网技术, 2021, 45(6): 2113-2121. |
LI Jiawei, WANG Xiaojun, HE Jinghan, et al. Distribution network fault location based on graph attention network[J]. Power System Technology, 2021, 45(6): 2113-2121. | |
[20] | 赵恺, 石立宝. 基于改进一维卷积神经网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45(8): 2945-2957. |
ZHAO Kai, SHI Libao. Transient stability assessment of power system based on improved one-dimensional convolutional neural network[J]. Power System Technology, 2021, 45(8): 2945-2957. | |
[21] | 符金伟, 史常凯, 尹惠, 等. 基于综合特征矩阵的配电网故障判别方法[J]. 中国电力, 2021, 54(11): 125-132. |
FU Jinwei, SHI Changkai, YIN Hui, et al. Distribution network fault type identification method based on feature-summarizing matrix[J]. Electric Power, 2021, 54(11): 125-132. | |
[22] | 徐艳春, 赵彩彩, 孙思涵, 等. 基于改进LMD和能量相对熵的主动配电网故障定位方法[J]. 中国电力, 2021, 54(11): 133-143. |
XU Yanchun, ZHAO Caicai, SUN Sihan, et al. Fault location for active distribution network based on improved LMD and energy relative entropy[J]. Electric Power, 2021, 54(11): 133-143. | |
[23] | ZENG X, GAO W, YANG G. High impedance fault detection in distribution network based on S-transform and average singular entropy[J]. Global Energy Interconnection, 2023, 6(1): 64-80. |
[24] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 770-778. |
[25] | 马鑫, 尚毅梓, 胡昊, 等. 基于数据特征增强和残差收缩网络的变压器故障识别方法[J]. 电力系统自动化, 2022, 46(3): 175-183. |
MA Xin, SHANG Yizi, HU Hao, et al. Identification method of transformer fault based on data feature enhancement and residual shrinkage network[J]. Automation of Electric Power Systems, 2022, 46(3): 175-183. |
[1] | REN Yiming, DU Dongsheng, DENG Xiangshuai, LIAN He, ZHAO Zhemin. Power line fault diagnosis based on GRU and GWO-KELM [J]. Integrated Intelligent Energy, 2024, 46(3): 54-62. |
[2] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[3] | WANG Lizhong, CHI Jianfei, DING Yeqiang, YAO Haiyan, TANG Zhipeng, WU Tongyu. Transformer fault diagnosis method based on NNTR-SMOTE and GA-XGBoost [J]. Integrated Intelligent Energy, 2024, 46(1): 84-93. |
[4] | XIAO Honglei, LIU Yi, XIA Hongjun, MIAO Yufeng, YU Xiaoling, YANG Haiqi. Oil-immersed transformer fault diagnosis method based on PCA and SSA-LightGBM [J]. Integrated Intelligent Energy, 2023, 45(3): 9-16. |
[5] | WU Xueqiong, XIA Dong. Review on intelligent planning and decision-making technology for the new active distribution network [J]. Integrated Intelligent Energy, 2023, 45(11): 20-26. |
[6] | YANG Xiaoyan, XIE Mancheng, GUO Xiaoxuan, ZHAO Yan, CHEN Chongmin, CHEN Zimin, LIAO Zhuoying. PV system fault diagnosis based on random forest classifier optimized by improved atomic orbital search algorithm [J]. Integrated Intelligent Energy, 2023, 45(10): 53-60. |
[7] | ZHENG Zhen, ZHU Feng, MA Xiaoli, TIAN Shuxin, JIANG Haozhe. Short-term new energy power prediction based on TL-LSTM [J]. Integrated Intelligent Energy, 2023, 45(1): 41-48. |
[8] | LONG Sicheng, HUANG Zhihong. Research on fault diagnosis method of power transformers based on multi-scale extreme fusion network [J]. Integrated Intelligent Energy, 2022, 44(9): 78-83. |
[9] | WANG Zhuorong, SHI Qingxin. Post-disaster restoration strategy of power distribution systems based on topology reconfiguration and distributed generation scheduling [J]. Integrated Intelligent Energy, 2022, 44(2): 29-34. |
[10] | CHEN Yufeng, WANG Jiahua, XU Jian, JI Xiaopeng. Development of the simulation system for microgrids based on programmable logic software [J]. Integrated Intelligent Energy, 2022, 44(11): 28-35. |
[11] | JIA Zhijun, BAI Delong, SONG Yanjie, WANG Jianfei, LI Chunxin. Research on on-line fault diagnosis and treatment of power plant equipment based on KPCA [J]. Huadian Technology, 2021, 43(8): 48-53. |
[12] | ZHOU Binghua, WANG Yang, LI Feng, CUI Jindong, RAN Zihan. Research on active distribution network planning and design strategy from the perspective of urban energy internet [J]. Huadian Technology, 2021, 43(1): 59-65. |
[13] | HU Jie,TANG Jing,XIE Shiyi,WANG Yun. State assessment and early warning application for power plant equipment based on big data technology [J]. Huadian Technology, 2020, 42(2): 1-6. |
[14] | HUANG Shaowei. Application of ACMD in fault diagnosis for bearings [J]. Huadian Technology, 2020, 42(1): 54-57. |
[15] |
WU Changhao,CAO Jingfang.
Fault diagnosis and analysis of gear breaking of low speed balltube mill speed reducer
[J]. Huadian Technology, 2019, 41(5): 69-72.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||