Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (1): 84-93.doi: 10.3969/j.issn.2097-0706.2024.01.010
• Cyber-Physical Security • Previous Articles
WANG Lizhong1(), CHI Jianfei1, DING Yeqiang1, YAO Haiyan2, TANG Zhipeng2, WU Tongyu3,*(
)
Received:
2023-08-22
Revised:
2023-10-10
Published:
2024-01-25
Supported by:
CLC Number:
WANG Lizhong, CHI Jianfei, DING Yeqiang, YAO Haiyan, TANG Zhipeng, WU Tongyu. Transformer fault diagnosis method based on NNTR-SMOTE and GA-XGBoost[J]. Integrated Intelligent Energy, 2024, 46(1): 84-93.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.01.010
Table 3
Characteristic quantities of dissolved gases and their codes
特征编码 | 特征量 | 特征编码 | 特征量 |
---|---|---|---|
1 | CH4/H2 | 10 | C2H4/THC |
2 | C2H2/H2 | 11 | C2H6/THC |
3 | C2H2/C2H4 | 12 | C2H2/THC |
4 | C2H4/C2H6 | 13 | (CH4+C2H4)/THC |
5 | C2H6/CH4 | 14 | H2/ALL |
6 | C2H2/CH4 | 15 | CH4/ALL |
7 | C2H4/CH4 | 16 | C2H2/ALL |
8 | H2/THC | 17 | C2H4/ALL |
9 | CH4/THC | 18 | C2H6/ALL |
Table 5
Dimension reduction indicators of different dimensionality
降维指标 | 6维 | 5维 | 4维 | 3维 | 2维 | 1维 |
---|---|---|---|---|---|---|
降维时间/s | 2.46 | 2.48 | 2.53 | 2.57 | 2.59 | 2.64 |
0.014 7 | 0.015 3 | 0.016 4 | 0.017 8 | 0.019 1 | 0.021 6 | |
QL | 0.825 2 | 0.832 6 | 0.844 3 | 0.857 2 | 0.862 5 | 0.871 4 |
QG | 0.403 2 | 0.416 4 | 0.422 0 | 0.430 2 | 0.438 5 | 0.449 2 |
QLG | 0.614 2 | 0.624 5 | 0.633 2 | 0.643 7 | 0.650 5 | 0.660 3 |
准确率/% | 91.84 | 92.36 | 93.52 | 95.45 | 95.97 | 90.63 |
Table 7
Evaluation indicators of the GA-XGBoost model
运行状态 | 查全率/% | 查准率/% | 误报率/% | 漏报率/% | Kappa系数 | 准确率/% |
---|---|---|---|---|---|---|
正常状态 | 94.4 | 89.5 | 5.6 | 10.5 | 0.954 2 | 95.97 |
中温过热 | 94.4 | 100.0 | 5.6 | 0 | ||
中低温过热 | 100.0 | 100.0 | 0 | 0 | ||
高温过热 | 94.7 | 100.0 | 5.3 | 0 | ||
放电兼过热 | 89.5 | 89.5 | 10.5 | 10.5 | ||
局部放电 | 100.0 | 100.0 | 0 | 0 | ||
低能放电 | 94.7 | 90.0 | 5.3 | 10.0 | ||
高能放电 | 100.0 | 100.0 | 0 | 0 |
[1] |
YAN P C, ZHANG C Y, MEI K F, et al. Research on fault diagnosis of transformer based on laser induced fluorescence technology[J]. Journal of Molecular Structure, 2022, 1258: 132645.
doi: 10.1016/j.molstruc.2022.132645 |
[2] | 廖伟涵, 郭创新, 金宇, 等. 基于四阶段预处理与GBDT 的油浸式变压器故障诊断方法[J]. 电网技术, 2019, 43(6): 2195-2203. |
LIAO Weihan, GUO Chuangxin, JIN Yu, et al. Oil immersed transformer fault diagnosis method based on four-stage preprocessing and GBDT[J]. Power System Technology, 2019, 43(6):2195-2203. | |
[3] |
MERVE D, HALUK G, CENGIZ M T. Improvement of power transformer fault diagnosis by using sequential Kalman filter sensor fusion[J]. International Journal of Electrical Power and Energy Systems, 2023, 149:109038.
doi: 10.1016/j.ijepes.2023.109038 |
[4] |
肖宏磊, 留毅, 夏红军, 等. 基于PCA与SSA-LightGBM的油浸式变压器故障诊断方法[J]. 综合智慧能源, 2023, 45(3): 9-16.
doi: 10.3969/j.issn.2097-0706.2023.03.002 |
XIAO Honglei, LIU Yi, XIA Hongjun, et al. Oil-immersed transformer fault diagnosis method based on PCA and SSA-LightGBM[J]. Integrated Intelligent Energy, 2023, 45(3): 9-16.
doi: 10.3969/j.issn.2097-0706.2023.03.002 |
|
[5] | Mineral oil-impregnated electrical equipment in service-guide to the interpretation of dissolved and free gases analysis: IEC 60599—2007[S]. |
[6] |
DAI J J, SONG H, SHENG G H, et al. Dissolved gas analysis of insulating oil for power transformer fault diagnosis with deep belief network[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 2828-2835.
doi: 10.1109/TDEI.2017.006727 |
[7] | ROGERS R R. IEEE and IEC codes to interpret incipient faults in transformers,using gas in oil analysis[J]. IEEE Transactions on Electrical Insulation, 1978, 13 (5): 349-354. |
[8] | 薛华, 张宏鹏. 模糊无编码比值在变压器油中气体检测的应用[J]. 科学技术与工程, 2012, 12(33):9033-9037. |
XUE Hua, ZHANG Hongpeng. Fuzzy no coding ratio in transformer oil gas detection in the application[J]. Science Technology and Engineering, 2012, 12(33) :9033-9037. | |
[9] |
QIN J, YANG D S, WANG N, et al. Convolutional sparse filter with data and mechanism fusion: A few-shot fault diagnosis method for power transformer[J]. Engineering Applications of Artificial Intelligence, 2023, 124:106606.
doi: 10.1016/j.engappai.2023.106606 |
[10] |
龙思成, 黄志鸿. 基于多尺度极限融合网络的电力变压器故障诊断方法研究[J]. 综合智慧能源, 2022, 44(9): 78-83.
doi: 10.3969/j.issn.2097-0706.2022.09.011 |
LONG Sicheng, HUANG Zhihong. Research on fault diagnosis method of power transformers based on multi-scale extreme fusion network[J]. Integrated Intelligent Energy, 2022, 44(9): 78-83.
doi: 10.3969/j.issn.2097-0706.2022.09.011 |
|
[11] | 朱永利, 吴立增, 李雪玉. 贝叶斯分类器与粗糙集相结合的变压器综合故障诊断[J]. 中国电机工程学报, 2005, 25(10):159-165. |
ZHU Yongli, WU Lizeng, LI Xueyu. Synthesized diagnosis on transformer faults based on Bayesian classifier and rough set[J]. Proceedings of the Csee, 2005, 25 (10): 159-165. | |
[12] | 姜寅, 任荭葳, 陈凯, 等. 基于BP神经网络的风电系统控制器I/O硬件故障自诊断方法[J]. 华电技术, 2020, 42(5): 55-60. |
JIANG Yin, REN Hongwei, CHEN Kai, et al. Self-detecting method for faults in wind turbine controller I/O hardware based on BP neural network algorithm[J]. Huadian Technology, 2020, 42(5): 55-60. | |
[13] | 李金阔, 王秀平. 基于循环BP模型的变压器状态数据清洗方法[J]. 电力学报, 2023, 38(2):101-109. |
LI Jinkuo, WANG Xiuping. Online detection method of transformer capacity based on cyclic BP model[J]. Journal of Electric Power, 2023, 38(2):101-109. | |
[14] | 李勇琦, 雷旗开, 王浩, 等. 基于BP神经网络的梯次利用电池健康状态诊断[J]. 华电技术, 2021, 43(7): 42-46. |
LI Yongqi, LEI Qikai, WANG Hao, et al. State of health estimation for echelon-used batteries based on BP neural network[J]. Huadian Technology, 2021, 43(7): 42-46. | |
[15] | 王永强, 律方成, 李和明. 基于粗糙集理论和贝叶斯网络的电力变压器故障诊断方法[J]. 中国电机工程学报, 2006, 26(8):137-141. |
WANG Yongqiang, LV Fangcheng, LI Heming. Synthetic fault diagnosis method of power transformer based on rough set theory and Bayesian network[J]. Proceedings of the CSEE, 2006, 26 (8): 137-141. | |
[16] | 陈欢, 彭辉, 舒乃秋, 等. 基于蝙蝠算法优化最小二乘双支持向量机的变压器故障诊断[J]. 高电压技术, 2018, 44(11):3664-3671. |
CHEN Huan, PENG Hui, SHU Naiqiu, et al. Fault diagnosis of transformer based on LS-TSVM optimized by bat algorithm[J]. High Voltage Engineering, 2018, 44 (11): 3664-3671. | |
[17] |
魏伟, 高赐威, 宋梦, 等. 基于HHO-SVM的电力线路故障检测分类系统[J]. 综合智慧能源, 2023, 45(3): 1-8.
doi: 10.3969/j.issn.2097-0706.2023.03.001 |
WEI Wei, GAO Ciwei, SONG Meng, et al. Power line fault detection and classification system based on HHO-SVM[J]. Integrated Intelligent Energy, 2023, 45(3):1-8.
doi: 10.3969/j.issn.2097-0706.2023.03.001 |
|
[18] | 李赢, 舒乃秋. 基于模糊聚类和完全二叉树支持向量机的变压器故障诊断[J]. 电工技术学报, 2016, 31(4): 64-70. |
LI Ying, SHU Naiqiu. Transformer fault diagnosis based on fuzzy clustering and complete binary tree support vector machine[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 64-70. | |
[19] |
ZHOU Y, LIU Y Y, WANG N, et al. Partial discharge ultrasonic signals pattern recognition in transformer using BSO-SVM based on microfiber coupler sensor[J]. Measurement, 2022, 201:111737.
doi: 10.1016/j.measurement.2022.111737 |
[20] | CHEN T, TONG H. Higgs boson discovery with boosted trees[C]// International Conference on High-energy Physics & Machine Learning, 2015:69-80. |
[21] | 苌瑶, 武建文, 马速良, 等. 基于多特征评估与XGBoost的高压断路器故障诊断[J]. 高压电器, 2023, 59(4):1-9. |
CHANG Yao, WU Jianwen, MA Suliang, et al. Fault diagnosis of high voltage circuit breaker based on multi-feature assessment and XGBoost[J]. High Voltage Apparatus, 2023, 59 (4): 1-9. | |
[22] | 谭雨欣, 田义超, 黄卓梅, 等. 北部湾茅尾海无瓣海桑红树林地上生物量反演——基于XGBoost机器学习算法[J]. 生态学报, 2023, 43(11): 4674-4688. |
TAN Yuxin, TIAN Yichao, HUANG Zhuomei, et al. Aboveground biomass of Sonneratia apetala mangroves in Maowei Sea of Beibu Gulf based on XGBoost machine learning algorithm[J]. Acta Ecologica Sinica, 2023, 43 (11): 4674-4688. | |
[23] | 商俊燕, 丁辉, 胡学龙. 基于XGBoost的无线传感器网络冗余数据检测算法[J]. 传感技术学报, 2022, 35(11): 1568-1572. |
SHANG Junyan, DING Hui, HU Xuelong. Redundant data detection algorithm for wireless sensor network based on XGBoost[J]. Chinese Journal of Sensors and Actuators, 2022, 35 (11): 1568-1572. | |
[24] |
TAN X M, QI J, GAN J Q, et al. Multi-filter semi-supervised transformer model for fault diagnosis[J]. Engineering Applications of Artificial Intelligence, 2023, 124:106498.
doi: 10.1016/j.engappai.2023.106498 |
[25] |
CHAWLA N V, BOWYER K W, HALL L O, et al. Smote: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
doi: 10.1613/jair.953 |
[26] | DEBABRATA D, TAMÁS S. Multidimensional stationary time series: Dimension reduction and prediction[M]. CRC Press: 2021. |
[27] | 马永杰, 云文霞. 遗传算法研究进展[J]. 计算机应用研究, 2012, 29(4):1201-1206,1210. |
MA Yongjie, YUN Wenxia. Research progress of genetic algorithm[J]. Application Research of Computers, 2012, 29(4):1201-1206,1210. | |
[28] | 汪可, 李金忠, 张书琦, 等. 变压器故障诊断用油中溶解气体新特征参量[J]. 中国电机工程学报, 2016, 36(23):6570-6578. |
WANG Ke, LI Jinzhong, ZHANG Shuqi, et al. New features derived from dissolved gas analysis for fault diagnosis of power transformers[J]. Proceedings of the CSEE, 2016, 36(23): 6570-6578. | |
[29] | MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(2): 2579-2605. |
[30] | 樊清川, 于飞, 宣敏. 基于优化Bi-LSTM模型的电力变压器故障诊断[J]. 计算机仿真, 2022, 39(11):136-140. |
FAN Qingchuan, YU Fei, XUAN Min. Power transformer fault diagnosis based on optimized Bi-LSTM model[J]. Computer Simulation, 2022, 39(11): 136-140. | |
[31] | 康佳宇, 张沈习, 张庆平, 等. 基于ANOVA和BO-SVM的变压器故障诊断方法[J]. 高电压技术, 2023, 49(5): 1882-1891. |
KANG Jiayu, ZHANG Shenxi, ZHANG Qingping, et al. Fault diagnosis method of transformer based on ANOVA and BO-SVM[J]. High Voltage Engineering, 2023, 49 (5): 1882-1891 | |
[32] | 安国庆, 史哲文, 马世峰, 等. 基于RF特征优选的WOA-SVM变压器故障诊断[J]. 高压电器, 2022, 58(2):171-178. |
AN Guoqing, SHI Zhewen, MA Shifeng, et al. Fault diagnosis of WOA-SVM transformer based on RF feature optimization[J]. High Voltage Apparatus, 2022, 58(2): 171-178. |
[1] | FENG Ji, YANG Guohua, SHI Lei, PAN Huan, LU Yuxiang, ZHANG Yuanxi, LI Zhen. Research on fault diagnosis of active distribution network based on parallel fusion deep residual shrinkage network [J]. Integrated Intelligent Energy, 2024, 46(6): 8-15. |
[2] | CHEN Yang, WENG Weijie, HUANG Jiangdong, ZOU Tao, JIANG Wei. Research on multi-path balancing topology based on transformers [J]. Integrated Intelligent Energy, 2024, 46(4): 68-77. |
[3] | REN Yiming, DU Dongsheng, DENG Xiangshuai, LIAN He, ZHAO Zhemin. Power line fault diagnosis based on GRU and GWO-KELM [J]. Integrated Intelligent Energy, 2024, 46(3): 54-62. |
[4] | XIAO Honglei, LIU Yi, XIA Hongjun, MIAO Yufeng, YU Xiaoling, YANG Haiqi. Oil-immersed transformer fault diagnosis method based on PCA and SSA-LightGBM [J]. Integrated Intelligent Energy, 2023, 45(3): 9-16. |
[5] | YANG Xiaoyan, XIE Mancheng, GUO Xiaoxuan, ZHAO Yan, CHEN Chongmin, CHEN Zimin, LIAO Zhuoying. PV system fault diagnosis based on random forest classifier optimized by improved atomic orbital search algorithm [J]. Integrated Intelligent Energy, 2023, 45(10): 53-60. |
[6] | YIN Yuchen, LIU Yuhang, MA Yuanqian, LEI Yi. Integrated energy demand forecasting for the park based on the Transformer algorithm [J]. Integrated Intelligent Energy, 2023, 45(10): 61-69. |
[7] | LONG Sicheng, HUANG Zhihong. Research on fault diagnosis method of power transformers based on multi-scale extreme fusion network [J]. Integrated Intelligent Energy, 2022, 44(9): 78-83. |
[8] | LI Caixia, ZHAO Jun, LI Jianwei, WANG Wei, WANG Jie, YU Haoyang. Data-driven modeling for SO2 mass concentration of CFB units under variable load conditions [J]. Integrated Intelligent Energy, 2022, 44(3): 63-69. |
[9] | LI Pengzhen, LIU Yanhong, WU Zhenlong. Active disturbance rejection control on load frequency of multi-area power systems with high-proportion renewable energy [J]. Integrated Intelligent Energy, 2022, 44(10): 33-41. |
[10] | JIA Zhijun, BAI Delong, SONG Yanjie, WANG Jianfei, LI Chunxin. Research on on-line fault diagnosis and treatment of power plant equipment based on KPCA [J]. Huadian Technology, 2021, 43(8): 48-53. |
[11] | JING Likun, TANG Yiqiang, PAN Fengping, WU Zhenlong. Multi-objective optimization of PI controller parameters under robustness constraint and its application [J]. Huadian Technology, 2021, 43(5): 1-8. |
[12] | WEI Jiadong, XU Fei, CAO Hui, MIAO Zhongjie, YE Changhui, ZHOU Niancheng. Intelligent perception platform for distribution transformers and its safety architecture based on IoT [J]. Huadian Technology, 2021, 43(1): 1-5. |
[13] | ZHANG Wenpu, WANG Qianggang. Optimized allocation of multi-energy complementary distributed energy system based on genetic algorithm [J]. Huadian Technology, 2021, 43(1): 52-58. |
[14] |
WU Luming,XUE Mingjun,CHEN Qi,WANG Yongxu,TANG Zhiguo,CHEN Hongyan1,2.
一起电子互感器异常引发的复杂发展性故障分析及改进 |
[15] | CAO Jianzong1,LIN Chenyu2,CHEN Wentong1,LIU Qi2,ZHOU Quan2,. Application of modern prediction and optimization algorithms in FGD systems [J]. Huadian Technology, 2020, 42(3): 59-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||