Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (6): 35-43.doi: 10.3969/j.issn.2097-0706.2024.06.005
• New Energy Optimal Control • Previous Articles Next Articles
ZHENG Qingming1(), JING Yanwei1, LIANG Tao2,*(
), CHAI Lulu2, LYU Liangnian3
Received:
2023-12-18
Revised:
2024-04-03
Published:
2024-06-25
Contact:
LIANG Tao
E-mail:zhengqingming@suntien.com;54008214@qq.com
Supported by:
CLC Number:
ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm[J]. Integrated Intelligent Energy, 2024, 46(6): 35-43.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.06.005
Table 1
Parameters of different energy allocation strategies under scenario 1
参数 | 控制策略 | PSO | DQN | DDPG |
---|---|---|---|---|
运行成本/美元 | 314.30 | 287.77 | 252.35 | 236.65 |
损失费用/美元 | 599.64 | 559.64 | 723.03 | 516.28 |
卖氢收益/美元 | 4 000 | 4 000 | 4 000 | 4 000 |
总利润/美元 | 3 086.06 | 3 152.59 | 3 024.62 | 3 247.07 |
丢弃功率/kW | 2 998.18 | 2 798.18 | 3 615.17 | 2 581.38 |
深度过充时间/h | 9 | 3 | 0 | 0 |
深度过放时间/h | 0 | 3 | 0 | 0 |
Table 2
Parameters of different energy allocation strategies under scenario 2
参数 | 控制策略 | PSO | DQN | DDPG |
---|---|---|---|---|
运行成本/美元 | 216.72 | 203.64 | 181.15 | 181.55 |
损失费用/美元 | 0 | 26.37 | 231.16 | 0 |
卖氢收益/美元 | 3 000 | 3 000 | 3 000 | 3 000 |
总利润/美元 | 2 783.28 | 2 769.99 | 2 587.69 | 2 918.45 |
丢弃功率/kW | 0 | 131.84 | 1 155.78 | 0 |
深度过充时间/h | 0 | 0 | 0 | 0 |
深度过放时间/h | 0 | 0 | 0 | 0 |
Table 3
Parameters of different energy allocation strategies under scenario 3
参数 | 控制策略 | PSO | DQN | DDPG |
---|---|---|---|---|
运行成本/美元 | 204.38 | 204.38 | 175.2 | 182.92 |
损失费用/美元 | 234.44 | 234.44 | 318.17 | 62.00 |
卖氢收益/美元 | 3 000 | 3 000 | 3 000 | 3 000 |
总利润/美元 | 2 561.18 | 2 561.18 | 2 506.63 | 2 755.08 |
丢弃功率/kW | 1 172.22 | 1 172.22 | 1 590.83 | 310.00 |
深度过充时间/h | 16 | 16 | 0 | 0 |
深度过放时间/h | 0 | 0 | 0 | 0 |
Table 4
Parameters of different energy allocation strategies under scenario 4
参数 | 控制策略 | PSO | DQN | DDPG |
---|---|---|---|---|
运行成本/美元 | 296.31 | 296.31 | 261.64 | 297.01 |
损失费用/美元 | 400.01 | 400.01 | 416.51 | 136.02 |
卖氢收益/美元 | 4 000 | 4 000 | 4 000 | 4 000 |
总利润/美元 | 3 303.68 | 3 303.68 | 3 321.85 | 3 566.97 |
丢弃功率/kW | 2 000.07 | 2 000.07 | 2 082.57 | 680.09 |
深度过充时间/h | 6 | 6 | 0 | 0 |
深度过放时间/h | 1 | 1 | 0 | 0 |
[1] | ZHANG Q, CHEN W M, LING W. Policy optimization of hydrogen energy industry considering government policy preference in China[J]. Sustainable Production and Consumption, 2022, 33: 890-902. |
[2] |
韩世旺, 赵颖, 张兴宇, 等. 面向碳中和的新型电力系统氢储能调峰技术研究[J]. 综合智慧能源, 2022, 44(9):20-26.
doi: 10.3969/j.issn.2097-0706.2022.09.003 |
HAN Shiwang, ZHAO Ying, ZHANG Xingyu, et al. Researches on hydrogen storage peak‑shaving technology for new power systems to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(9):20-26.
doi: 10.3969/j.issn.2097-0706.2022.09.003 |
|
[3] | HAO W, ZHANG S X, LI X X, et al. A multivariate coupled economic model study on hydrogen production by renewable energy combined with off‑peak electricity[J]. International Journal of Hydrogen Energy, 2022, 47(58):24481-24492. |
[4] |
葛磊蛟, 崔庆雪, 李明玮, 等. 风光波动性电源电解水制氢技术综述[J]. 综合智慧能源, 2022, 44(5):1-14.
doi: 10.3969/j.issn.2097-0706.2022.05.001 |
GE Leijiao, CUI Qingxue, LI Mingwei, et al. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV[J]. Integrated Intelligent Energy, 2022, 44(5):1-14.
doi: 10.3969/j.issn.2097-0706.2022.05.001 |
|
[5] | KAFETZIS A, ZIOGOU C, Panopoulos K D, et al. Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen[J]. Renewable and Sustainable Energy Reviews, 2020, 134:110118. |
[6] | MOHAMMED A, GHAITHAN A M, AL-HANBALI A, et al. A multi‑objective optimization model based on mixed integer linear programming for sizing a hybrid PV‑hydrogen storage system[J]. International Journal of Hydrogen Energy, 2023, 48(26):9748-9761. |
[7] | FANG R M. Multi‑objective optimized operation of integrated energy system with hydrogen storage[J]. International Journal of Hydrogen Energy, 2019, 44(56):29409-29417. |
[8] | CHENG T, ZHU X Q, GU X Y, et al. Stochastic energy management and scheduling of microgrids in correlated environment: A deep learning‑oriented approach[J]. Sustainable Cities and Society, 2021, 69:102856. |
[9] | HARROLD D, CAO J, FAN Z. Renewable energy integration and microgrid energy trading using multi‑agent deep rein‑ forcement learning[J]. Applied Energy, 2022, 318:119151. |
[10] | 刘俊峰, 陈剑龙, 王晓生, 等. 基于深度强化学习的微能源网能量管理与优化策略研究[J]. 电网技术, 2020, 44(10):3794-3803. |
LIU Junfeng, CHEN Jianlong, WANG Xiaosheng, et al. Energy management and optimization of multi‑energy grid based on deep reinforcement learning[J]. Power System Technology, 2020, 44(10):3794-3803. | |
[11] | 张自东, 邱才明, 张东霞, 等. 基于深度强化学习的微电网复合储能协调控制方法[J]. 电网技术, 2019, 43(6):1914-1921. |
ZHANG Zidong, QIU Caiming, ZHANG Dongxia, et al. A coordinated control method for hybrid energy storage system in microgrid based on deep reinforcement learning[J]. Power System Technology, 2019, 43(6):1914-1921. | |
[12] | 余宏晖. 基于深度强化学习的微电网能量优化管理研究[D]. 广州: 华南理工大学, 2021. |
YU Honghui. Research on energy optimization management of microgrid based on deep reinforcement learning[D]. Guangzhou: South China University of Technology, 2021. | |
[13] | 孙惠娟, 段伟男, 陈俐, 等. 基于乐观行动-评判深度强化学习的含氢综合能源系统低碳经济调度[J]. 电网技术, 2024, 48(5):1873-1883. |
SUN Huijuan, DUAN Weinan, CHEN Li, et al. Low‑carbon economic scheduling of hydrogen integrated energy system based on optimistic actor-critic deep reinforcement learning[J]. Power System Technology, 2024, 48(5):1873-1883. | |
[14] | 梁涛, 孙博峰, 谭建鑫, 等. 基于深度强化学习算法的风光互补可再生能源制氢系统调度方案[J]. 高电压技术, 2023, 49(6):2264-2275. |
LIANG Tao, SUN Bofeng, Tan Jianxin, et al. Scheduling scheme of wind-solar complementary renewable energy hydrogen production system based on deep reinforcement learning[J]. High Voltage Engineering, 2023, 49(6):2264-2275. | |
[15] | 彭刘阳, 孙元章, 徐箭, 等. 基于深度强化学习的自适应不确定性经济调度[J]. 电力系统自动化, 2020, 44(9):33-42. |
PENG Liuyang, SUN Yuanzhang, XU Jian, et al. Self‑adaptive uncertainty economic dispatch based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2020, 44(9):33-42. | |
[16] | 王桂兰, 张海晓, 刘宏, 等. 基于近端策略优化算法含碳捕集的综合能源系统低碳经济调度[J]. 计算机应用研究, 2024, 41(5):1508-1514. |
WANG Guilan, ZHANG Haixiao, LIU Hong, et al. Low carbon economic scheduling of integrated energy systems based on proximal policy optimization algorithm with carbon capture[J]. Application Research of Computers, 2024, 41(5):1508-1514. | |
[17] | 江昌旭, 刘晨曦, 林铮, 等. 基于深度强化学习的电力系统暂态稳定控制策略研究综述[J]. 高电压技术, 2023, 49(12):5171-5186. |
JIANG Changxu, LIU Chenxi, LIN Zheng, et al. Review of power system transient stability control strategies based on deep reinforcement learning[J]. High Voltage Engineering, 2023, 49(12):5171-5186. |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[3] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[4] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[5] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[6] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[7] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[8] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[9] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[10] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[11] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
[12] | YANG Bo, LI Chengyun, LYU Haoxuan, ZHOU Bowen, LI Guangdi, GU Peng. Power system transient stability assessment method based on multiple STA-GLN ensemble models [J]. Integrated Intelligent Energy, 2023, 45(7): 48-60. |
[13] | LIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network [J]. Integrated Intelligent Energy, 2023, 45(6): 1-8. |
[14] | DOU Zhenlan, SHEN Jianzhong, ZHANG Chunyan, JIANG Jingjing, CHEN Qi, CHEN Jing. Time-decoupling hierarchical energy management of integrated energy systems considering supply and demand uncertainty [J]. Integrated Intelligent Energy, 2023, 45(6): 17-24. |
[15] | HAN Chaobing, TANG Bing, YIN Ruilin, ZHU Zhengxiang, XUE Minghua, ZHU Jianfei, AI Chunmei, SUN Li. Research on modeling and characteristic simulation of a typical integrated energy system [J]. Integrated Intelligent Energy, 2023, 45(6): 49-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||